The Readout Driver for the ATLAS Muon End-cap Trigger
and
its architecture and design language techniques

D. Lellouch, L. Levinson, A. Roich

Weizmann Institute of Science, Rehovot, Israel 76100
Lorne.Levinson@weizmann.ac.il

Abstract

The prototype of the Read Out Driver for the ATLAS
Muon Endcap trigger system is described. The hardware is
based on a single large Xilinx Virtex FPGA that accepts data
from four gigabit optical links and sends processed output to
the ATLAS central DAQ via an S-link and sampled data to a
VME processor via the VMEbus. A C-like procedural lan-
guage was used for a large part of the design. In addition to
using pipelined logic and other standard FPGA design tech-
niques, the design uses some architectural elements that are
more common in microprocessor architectures. The ROD’s
design features, implementation details, DAQ software, ex-
perience with the procedural language and performance are
described.

I. OVERVIEW OF THE READOUT SYSTEM

The ATLAS Muon Endcap trigger has a hierarchical read-
out system for 320,000 binary channels from Thin Gap
Chambers, “TGCs”, see Figure 1. The "Read Out Driver”,
ROD module, one for each octant, collects data via 13 optical
links, sends an assembled event via an output S-link to the
ATLAS central DAQ, and then sends a small sample of the
event data via the VMEbus to a commercial VME processor.
Each octant consists of ~180 on-chamber trigger-readout
ASICs whose data is concentrated by 12 Star Switches. Each
Star Switch, i.e. ROD input link, provides data from 700 to
1900 binary channels. An important feature is that the Star
Switches do a partial sparse data scan and send the ROD
partly zero-suppressed data. Consequently the ROD must
handle variable length records. The estimated input bandwidth
per octant (ROD) is 22MB/sec, with no safety factor. The data
is read out in response to a Level-1 trigger, which can occur at
a rate up to 100kHz. Table 1 summarizes the major ROD re-
quirements.

A. Character of the input data

The data is dominated by cavern background: about 10
uncorrelated hits, i.e. from neutrons and gammas, and about
1.5 correlated hits, i.e. from charged particles, per Level-1
trigger per octant. The charged particles result in hits is sev-
eral layers of chambers. The simulations [1] of the cavern
background giving these occupancies have a large uncertainty
and therefore a safety factor of 10 should be applied, espe-
cially since the ROD, sitting at the top of the hierarchy, is the
bottleneck for the TGC readout.

Muon Endcap trigger chambers (TGC) readout for 1 of 16 octants

20,000 binary channels on 12 FE links

180 trig1g9er/readout ASICs per octant
to ROB 700 to 1900 channels per link

1Gb/s optical link

ROD crate
In USA15

13 Optical links
640Mb/s, ~80m

Star Switch 80Mb/s
LVDS links

Doublet pair LLooavor

Inner Doublet Triplet

Figure 1: Readout of one Muon Endcap trigger octant.

Due to the low occupancy, the data is dominated by head-
ers. These are still required to confirm that all the bunch
crossing and Level-1 ID counters in the on-chamber ASICs are
synchronized.

In addition to chamber hits, the data include the output
from the coincidence logic of the on-chamber ASICs. These
are 2-out-of-3 or 3-out-of-4 coincidences, called “tracklets”
caused by the correlated hits of charged particles traversing 3
or 4 chamber layers. These provide a monitor of the proper
functioning of the on-chamber coincidence logic, which is
crucial to the integrity of the muon trigger.

Table 1: Required functions of the ROD

Receive TTC information and queue expected event
Level-1 Accept IDs.

Collect event fragments from several Front End links cor-
responding to each of the Level-1 Accept Event Ids.

Detect and recover from input link errors and data errors.

Assert RODBUSY to the ATLAS CTP module when neces-
sary, but as infrequently as possible.

Extract hit and trigger data from zero-suppressed bit map

Provide sampled full events, hits and tracklets to the ROD
Crate Processor for monitoring the system.

Format events into ATLAS standard ROB format.

Send the data to the ROB and/or Rod Crate Processor.

Respond to flow control signals from the ROB.

Other requirements for calibration and monitoring.




II. ROD HARDWARE IMPLEMENTATION

Figure 2 shows a block diagram of the implementation of
the TGC ROD prototype. It is based on a Xilinx Virtex FPGA
with 10800 logic cells (flip-flops) and 140 blocks of “%2KB
width-configurable dual port RAM. The board is a 6U VME
board with three programmable clocks (1 to 100MHz) and
IMB of ZBT SRAM. A PLD provides various services. TTC
signals can be received either as NIM or LVDS signals. The
four input Front End links are implemented by opto-
transceivers and Agilent G-link deserializers on four daughter
boards. The output is via a standard S-link connector, on the
back of the motherboard. The board is sufficiently general to
allow its use also as a source of simulated data for driving
Front End links to a ROD. For this use, the ZBT RAM is used
as a store of simulated events. The daughter boards imple-
menting the Front End links also have transmitters.

mew 4 b1

Front Panel LEMO
or LVDS pairs FEO FE1 FE2 FE3
G-link G-link G-link G-link
A32/
D32
VME IF
bus || RAM
2 buffers
A21/D32 FPGA
Virtex
interrupt| XCv405BG560 || | LUT
Service CPLD
control/status
registers
— clock control A
parallel FPGA SLink
configuration
JTAG l
to ROB

Figure 2: Block diagram of TGC prototype ROD

I11. DATA PROCESSING

Figure 3 shows a simplified view of the data processing in
the ROD FPGA. The design consists of a pipeline of variable
latency processes connected by FIFOs. Unlike a registered
pipeline, each pipeline stage, i.e. process, has fluctuations
from event to event in its execution time and amount of output
for the next stage. Each FIFO is a FIFO pair: one for the data
words and another for a control word indicating the number of
data words in a “record” and their status. The reader usually
waits for an available item in the control FIFO, which is writ-
ten after the data FIFO is written.

The first stage is a set of parallel processes that for each
link checks each event fragment’s framing, stores the frag-
ment in the data FIFO and records the fragment’s word count
and any link errors in the control FIFO. The Level-1 trigger
information is stored in another FIFO. The second stage is the
main fragment processing: For each Level-1 trigger all the
fragments are processed: their format is verified, Level-ID

and Bunch Crossing IDs are matched, hits and tracklets are
extracted by decoding the partially zero-suppressed bit maps
and written to FIFOs. There is more than one fragment proc-
essor working in parallel. Additional output FIFOs from this
stage sample hits and tracklets for the ROD crate processor
monitor tasks to read via the VMEDbus. The final stage formats
the event in ATLAS standard ROB format and sends all

FE link FE link FE link

TTC ¢ ¢
frame & frame & frame &
check check check

EFEdata] [FE data] =FE datar]

T

process
fragment

process
event

—» to VME

to ROB
events out the S-Link. Events are also sampled here for the
ROD crate processor.

Figure 3: Simplified view of data processing in the FPGA with in-
ternal FIFOs.

IV. ARCHITECTURAL ELEMENTS AND THE
HARDWARE DESCRIPTION LANGUAGE

The FPGA design was implemented using graphic tools
that produce VHDL (Mentor Graphics HDL Designer),
VHDL and Handel-C [3] with VHDL output. Mentor Graph-
ics Leonardo synthesized it all for the Xilinx Place and Route
tool. In addition to providing a high-level language to express
the complex procedural processes, Handel-C enabled the easy
incorporation of high-level architectural elements that sim-
plify and modularise the design. After a brief summary of
Handel-C, we discuss some of these elements.

A. Overview of Handel-C

The Handel-C language follows standard C syntax. Vari-
ables and arrays are implemented as registers or memory (ei-
ther internal or external to the FPGA). Every assignment
statement takes exactly one clock. In addition, several features
from the Occam language developed for transputers have
been adopted: Statement blocks can be identified as sequen-
tial or parallel. In the former all statements are executed one



after the other, in the later, in parallel (the block finishes when
the last statement finishes). Parallel and sequential blocks can
be nested in each other to any depth. Different sequential
“threads” running in parallel can communicate and synchro-
nize by means of passing single words through channels.
These work as follows: when one thread issues a channel in-
put (output) command it is suspended until the second thread
executes the matching channel output (input); then, in one
clock, the transfer takes place and both threads continue. It is
easy to make a large number of variable latency parallel
threads and synchronize them. Complex procedures making
use of FPGA parallelism can be expressed. The design is syn-
chronous by definition. Rich (and recursive) macros can be
defined to create multiple instances of hardware structures.
Despite the “C” syntax, the specific FPGA architecture, HW
concurrency, how structures and algorithms synthesize, and
timing constraints must be understood. Handel-C can produce
VHDL or EDIF and can interface to VHDL and Xilinx cores.

B. Architectural elements

1)  Embedded FIFOs

The large number of imbedded dual port memory blocks
in the FPGA allows pipelines with variable latency stages to
be constructed entirely within the FPGA. Embedded FIFOS
are also used to bridge the several clock domains required by
the ROD. Each Front End link process runs with a clock from
its link’s deserializer. In addition to the main design clock,
there are separate clocks for the S-link and the TTC. The
Front End link FIFO depths can be chosen according to the
occupancy of the chambers they read out. The occupancies of
all FIFOs can be monitored via the VME bus.

2) Thread-to-thread pipes

Thread-to-thread pipes are an extension of channels to a
depth of more than one item. Almost all FIFOs in the design
are implemented by a “pipe” object whose properties are: can
read and/or write on every clock, read-on-empty and full-on-
write conditions block (stall) the invoking thread until not-
empty or not-full, can test empty, full and count anytime, can
generate a Service Call to the host CPU on ~empty and al-
most-full, writes intended to execute on the same clock as the
pipe transfer are guaranteed to do so. The last is important, for
example:

par {pipe_write(hitpipe, hitid) ; hitid++ ;}

The incremented value of hitid must never be stored in the
pipe, even if the pipe is full. This is done by stalling affer the
write if the pipe has just become full. (Note here how one
instantiates a counter in Handel-C.)

3) Multiple “execution units” — fragment farm

The data volume varies from link to link and from event to
event. There are 13 links but only about four fragment proces-
sors are needed to attain the required throughput. The process-
ing capability should be matched to the average load, not to
the number of links. Several fragment processors, FPs, are
therefore instantiated as separate threads using the Handel-C

“array of functions” construct. A dispatcher thread allocates
each fragment to an FP on the fly using one channel per FP to
pass the link ID of the fragment to process. The FP uses an-
other channel to acknowledge completion. There is one output
FIFO per FP. Another thread receives acknowledges and up-
dates the list of free FPs. The size of the FPs justifies the addi-
tional multiplexing to implement this architecture.

4) Service calls

Several situations require sending a signal from a hard-
ware thread to a software process on the host CPU. Examples
are data ready for the host and exceptional conditions such as
unrecoverable loss of event synchronization, link failure, and
various time outs. Each of 255 different signals, i.e. SVCIDs,
can be assigned for handling to a host CPU process, not nec-
essarily to the same process. The scenario is as follows:

e An FPGA polling loop running over all conditions posts the
SVCID to a VME register.
o A channel is used to serialize posting.
e Interrupt host CPU.
e The host interrupt handler reads the SVCID and acknowledges
it by clearing the SVCID register.
e The host interrupt handler sends a SW signal to the process
that subscribed to this SVCID.
o The host interrupt handler is now ready for another SVC.
e The host process performs the service, e.g. empties a FIFO.

e The host process writes a “done” acknowledge for this SVCID
to the SVCACK register.
o This SVCID can now be issued again.

5) FPGA to host CPU pipes

Some pipes have their read port on the VMEbus. Sampled
events, hits and tracklets are passed to the monitoring tasks on
the ROD crate CPU via such pipes. The host is interrupted by
a Service Call either on a not-empty or almost-full condition.
The SVCID indicates which pipe needs service. Particularly
useful is an exception/message/debug info pipe. A message
code, severity level and data bytes are written to this pipe and
a software process counts, logs and perhaps services each
exception. Hardware threads can dump values for debugging.

C. Advantages of Handel-C

We have drawn several conclusions on the suitability of
Handel-C for the ROD design. Handel-C is most advanta-
geous when the processing path depends on the data content,
as opposed to, for example, matrix multiplication. The high
level nature allows easy adaptation to demands for new and
enhanced functionality. Handel excels in expressing complex
arithmetic or logical algorithms and situations where there are
many special cases, exceptions and error conditions. The high
level does have a slight speed penalty, but the critical paths
can be tuned or even done directly in VHDL. The advantages
are less when the design centers on pipelines with fixed length
data and deterministic latency and where there are only simple
sequential data dependencies.



V. INTEGRATION AND PERFORMANCE

First, data with the Front End link protocol and format
sent by the Star Switch was successfully received and basic
ROD functionality verified. Then Star Switch emulators im-
plemented by other ROD boards were used for further devel-
opment, testing and integration. Several million event frag-
ments simulated with the actual mix of Front End ASICs and
occupancies from background were sent over Front End links
to the ROD, processed, assembled into ATLAS standard for-
mat, and sent over an S-Link to an ATLAS DAQ PC running
an event format checking program. Figure 4 shows the dia-
gram of the integration test.

TGC ROD -- DCS -- ROB integration test
at CERN -- July 2002 o

> DCSLCS ROB
PS Board CANbus PVSS on Win PC

+ELMB
DAQ-DCS-COM

ROD crate CPU S-Link to PCI
ROD as ROD S-Link
DST

SBIC

SBIC

=}
Ie}
@
o
»

ROD as Star
Switch emulator

TTC
lemulator|

>
I

]

Optical G-links

Figure 4: The integration test.

Online DAQ programs running in a ROD crate processor
controlled configuration and data flow. This processor was a
VME single board Pentium computer running Linux and
many of the ATLAS Online software packages, including:
Run Control, Information Server, Process Manager, Message
Reporting System, the Configuration Database (simple use),
VME driver and DAQ-to-DCS Communication (DDC).

At Start-of-Run, commands to configure on-chamber pa-
rameters such as chamber thresholds and ASIC parameters
were sent via DDC to the DCS Local Control Station PC run-
ning the PVSS SCADA system. These were forwarded via
CANbus to the on-chamber ELMB microprocessors for exe-
cution and status returned. In response to interrupts, sampled
events and messages were read from the ROD via VME into a
buffer manager [2] and checked for consistency by an intelli-
gent event analyser and formatted dump. The Information
Service provided a display of error counts and data flow sta-
tistics.

Measurements of maximum sustainable Level-1 event rate
were made with sets of simulated events with occupancy
varying from 0.1 to 20 times the expected: at expected occu-
pancy the maximum Level-1 rate was 400kHz. At the maxi-
mum required ATLAS Level-1 rate of 100kHz the ROD was
able to handle 20 times the expected occupancy. These rates
are for one fragment processor handling the two worst-case
Front End links in series. The final ROD will have four to six
fragment processors for 13 links.

VI CONCLUSIONS

Using a large FPGA programmed with a high-level pro-
cedural language has delivered the required performance
as well as the flexibility to respond to complex and ad-
vancing requirements.

C-like high-level procedural languages allow for easy
implementation and use of high level architectural ele-
ments such as multiple execution units, variable latency
pipelines, multi-threading with thread-to-thread commu-
nication, and hardware to software messaging.

C-like high-level procedural languages are a viable tool
for real world FPGA designs, provided they are applied
to suitable parts of the problem.

VII. REFERENCES

Ian Dawson, FLUKA simulation of the ATLAS cavern
background fluences, Configuration AVS, presented at
the ATLAS Week, June 2000

KLOE Buffer Manager, Enrico Pasqualucci, INFN,
Roma

Handel-C, Celoxica, Ltd., UK, http://www.celoxica.com



