

Status of LArG DMILL chips

C. de LA TAILLE

LAL Orsay

on behalf of the LArG collaboration

http::/www.lal.in2p3.fr/recherche/atlas

Liquid Argon front-end electronics overview

Calibration : 116 boards @ 128 ch

1524 boards @ 128 ch

12 sept 2001

C. de La Taille

Radiation maps

[LEB6 p.270]

Radiation levels for LAr crates

- barrel (in 10 yrs) :
 - TID = 50 Gy/10 yr
 - NIEL = $1.6 \ 10^{12} \ \text{N/cm}^2/10 \text{yr}$
 - SEE = $7.7 \ 10^{11} \text{ h/cm}^2/10 \text{yr}$ (>20 MeV)

Radiation Tolerance Criteria (RTC) for DMILL chips (includes SF)

- TID = 50 * 3.5 (simul) * 1.5 (ldr) * 2 (lot)= 525 Gy/10 yr(3.5 kGy for COTS)
- NIEL = $1.6 \ 10^{12} * 5 \ (\text{simul}) * 1 \ (\text{ldr}) * 2 \ (\text{lot})$
- SEE = $7.7 \ 10^{11} * 5 \text{ (simul)} * 1 \text{ (ldr)} * 2 \text{ (lot)}$
- Irradiation tests are *mandatory* for final qualification and still recommended for production batches

[LArG 2000-006]

Generate 0.2% precision calibration pulses (Annecy, Mainz, Orsay)

- Milestones : * Final prototype : Apr 02
 - * Production of 130 boards : Apr 03
 - * Installation complete Feb 05

Calib : DAC design

- COTS failed irradiation tests at 20 Gy
- 16 bits dynamic range (16 μ V-1V), 10 bits accuracy (0.1%)
- external R/2R ladder and highly degenerated current sources
- Good stability at small DAC value

Calib : DAC performance

Yield :

- 6.3 mm² chip, received Mar 01
- yield : 94%
- Performance :
 - Accuracy : 0.01% or 10 μV
 - Linearity : INL < 0.01%
 - Stability : 0.01%/K
 - Settling time < 1 μs

Calib : DAC irradiation results

Carte 1 / DAC R-2R

Calib : DAC final version

Final DAC prototype

- Band-gap reference voltage (1.5 V).
- Current mirror removed. Feedback on reference.
- Logic level translators inside
- Submitted in Sept 01, area : 8 mm²
- 1 DAC per board, 150 chips needed

Calib : low offset opamp design

Calib : low offset opamp performance

Vield :

- 2 mm² chip, received March 01 (MPW 471).
- Fully functional. Yield : 92%
- Selection inside $\pm 100 \,\mu V$? sorting yield : 70%

Performance :

- Open loop gain 80,000
- $\bullet GBW = 100 \text{ kHz}$
- Offset stability : a few μV
- Temperature sensitivity : $+1 \mu V/K$

Final iteration

- Include HF switch (cost reduction)
- Opamp unchanged
- Chip submitted in May 01. Area : 3 mm²

Calib : low offset opamp irradiation results

Gammas up to 2 kGy

- ⁶⁰Co at Pagure (Saclay)
- No change within $15 \,\mu V$ up to 200 krad
- Neutrons up to 9 10¹³ N/cm²
 - ~10 MeV neutrons at CERI (Orleans)
 - Maximun change : $50 \mu V$ after $9 \ 10^{13}$
 - Beta change (@ $I_c = 25 \mu A$):
 - 180 prerad, 62 @ 510¹³, 37 @ 9 10¹³

C. de La Taille

Calib : Digital chips

Front End Board (FEB) : overview

Amplification, shaping, analog storage and digitization (Nevis)

Milestones : first final board : Oct 2001, 30 boards : Oct 2002, 1700 boards : Apr 2003

FEB : analog pipelines (SCA)

[LEB6 p.203]

- SCA : DMILL CMOS chip (Nevis,Orsay,Saclay)
 - 144 cells deep analog storage, 13 bit dynamic range
 - 4 channels (3 gains + 1 reference) per chip. Dissipation 300 mW.
 - Simultaneous Read/Write at 40 MHz. Output rate 5 MHz.
 - Noise : 290 μ V ; fixed pattern noise : 250 μ V ; jitter < 70 ps
 - Irradiation tests : OK
 - 3 kGy
 - 2 10¹³N
 - no SEU tests
 - **Yield** : 10-90%

BATCH	DATE	YIELD
V 1.1	6 / 98	90 %
V 1.2	8 / 98	80 %
V 2 w12	8 / 99	50 %
V2 w4	8 / 99	84 %
V 3.1	10 / 99	10 %
V 3.2	7 / 00	65 %
V 4.1	3 / 01	60 %

12 sept 2001

FEB : DMILL SCA test results

Engineering run launched in nov 00

- 30 mm² chip; 416 chips/wafer
- 6 wafers received in march 2001,2 more in july 01 (new batch)
- 2543 chips tested : raw yield : 69%
- Cut on leakage current : I < 5 pA ? yield : 65%

- Production run : fall 2001
 - 32 per FEB ? 54,000 chips needed
 - 220-250 wafers (~ 1.5 M\$)
 - PRR with Atmel : Oct 2001.
 Define target yield
 - Tests at Grenoble with robot : ~6 months

¹/₄ digital FEB

Test setup for all FEB digital ASICs (Nevis)

 Complete operation of SCAC, Gain selector, config contr., SPAC slave, TTCRx, MUX, Glink ? Tests OK

FEB : SCA controller (SCAC)

A very critical component (Alberta)

- Book-keeping of SCA addresses
- Mod0 Xilinx (0.35 µm XC 4036) failed at 450 Gy
 - SEU cross-section : $s_{SEU} = 2.7 \ 10^{-9} \ cm^2 \ [LArG 2001-011]$
 - LET for configuration switches : 22 ± 2 MeV
 - 1 latch-up @105MeV : $s_{SEI} = 8 \ 10^{-14} 10^{-12} \ cm^2 \ (95\% \ CL)$

Difficult implementation in DMILL

- Special RAMs needed (CEA-DAM)
- Large chip area (80 mm²)? potentially low yield (20%)
- **SEU**: incorrect functioning until reset
 - no room for error detection/correction
- Submitted Nov 00 (MPW 533), received July 01

Backup launched in DSM (0.25 µm) (Nevis)

- Smaller area (16 mm^2), higher yield, lower cost
- Error correction implemented
- Submitted Feb 01, received July 01.

In critical path if an iteration is needed

2 chips per FEB, 3 400 chips needed

12 sept 2001

C. de La Taille

FEB : DMILL SCAC test results

Yield (DMILL)

- 40 chips received july 01
- 28 good parts : preliminary yield : 70%
- Correct operation up to 50 MHz (9 chips tested)
- No failure after burn-in (7 chips tested)

SEU test results (Alberta)

- 4 chips irradiated to 3-6 $10^{11} \text{ p}^+/\text{cm}^2$ (74 MeV) (Triumf Aug 01)
- Associated TID : 30-80 krad
- Mean flux until upset : $4.6 \pm 0.2 \ 10^{10} \text{ p}^+/\text{cm}^2$. Power cycling needed to reset !
- Extrapolated to ATLAS as 1 SEU/SCAC/70days ? reset every hour
- Traced to "Power on reset" (analog) circuit, issuing continuous reset.
 - Failure probably due to TID effect
 - Removed externally
 - Further failures (with TID) of the input LVDS buffers

FEB : Gain selector

Gain selection and data formatting (Nevis)

- On chip storage of 16 thresholds values
- SEU mitigation : on chip bit error detection and correction
- **DMILL chip**
 - 21 mm² chip, received Mar 01. yield : 93%.
 - 581 chips per wafer, 34 wafers necessary : full engineering run.
- **DSM** alternative
 - 16 mm² chip, submitted in Feb 01, received Jun 01
- **SEE irradiation results (DMILL chip)**
 - 5 chips irradiated to 2-7 10¹³ p⁺ (50, 100, 158 MeV) (Harvard may 01)
 - SEE : SBE (corrected) and SEU (? 1-2 events corrupted)
 - Extrapolated rate to full calo : 1 SBE/30 min 1 SEU/168 min

	Energy	Fluence	Single Bit	t Errors (SBE)	Single Event Upsets (SEU)		
	(MeV)	$(10^{13}/cm^2)$	Number	σ (10 ⁻¹³ cm ²)	Number	σ (10 ⁻¹³ cm ²)	
	50	2.4	0	_	0	_	
	100	4.0	14	3.5	4	1.0	
	158	20.8	212	10.2	38	1.8	
2	sept 2001	C. (de La Taille 7th	conference on LHC electro	nics Stockholm	19	

FEB : digital chips

Config controller (Nevis)

- Interfaces SPAC to local busses (shaper, SCAC, regulators...)
- DMILL chip : 22 mm² area, received Mar 01 yield : 93%. Final
- **SEE** irradiation results (4 DMILL chips) 7-22 10¹³ p⁺ (158 MeV)
 - 69 SEU observed ? $s_{SEU} = 1.5 \ 10^{-13} \ cm^2$
 - $R_{SEU} = 1 \text{ SEU}/26.8 \text{ hr in ATLAS}$ (2-15 Mrad associated TID)

SPAC slave (Paris) [LEB6 p.454]

- Serial interface to write/read parameters. Manchester encoding
- 27 mm² DMILL chip, received Mar 01. yield : 94%.
- Iterated in sept 01 for SEU mitigation

MUX (Multiplexer) (Grenoble) [cf. talk by D. Dzahini]

- Data formatting for Glink serializer (32bits 40MHz ? 16bits 80MHz)
- 18 mm² chip, received Mar 01. yield : 88%.
- **SEE** test up to ~ 10^{13} N (20 MeV) : negligible compared to Glink
- Iterated in may 01 to remove dual mux for single Glink

12 sept 2001

C. de La Taille 7th conference on LHC electronics Stockholm

Tower builder : overview

Analog summation to form LVL1 towers (Saclay)

- Milestones : same as calib
 - Oct 02 : 2 final boards
 - Dec 02 : PRR

TBB : analog multiplexer

Analog multiplexer (BiMUX) : DMILL (Saclay)

- previous COTS (DG358) failed at 170 Gy
- Prototype DMILL chip realized in 1998
 - 8 big CMOS switches + control logic (registers)
- area : 4.6mm^2 ; yield : 80%
- 32 chips per board ? 8,000 chips needed
- Irradiated to 2 kGy and 310^{13} N .
- **SEU** test showed no error up to ~ $10^{1?}$ N (20 MeV)
- Full production planned in 2001 or 2002

Shared DMILL wafers

- Analog reticle
 - **5**2 opamps
 - 25 BiMUx
 - 2 DAC
- **13** wafers needed
- Cost : ~ 150 k\$

- Digital reticle
 - 4 SPAC
 - 2 calib logic
 - **3** Configuration controllers
 - **3** MUX
- **20** wafers necessary
- Cost : ~ 200 k\$

12 sept 2001

C. de La Taille 7t

Summary of LArG DMILL chips

Chip	Area (mm ²)	Min chips required	OK /tested	Yield	Iteration out	Comments
SCA	30	54 000	1643/2543	65%	None	final
Gain select.	21	13 300	27/29	93%		DSM alternative
SCA contr.	80	3 300	28/40	70%		DSM alternative
FEB config	20	1 650	37/40	93%	None	final
DMUX	18	1 650	15/17	88%	nov 01	Remove dual
Calib logic	16.4	700	3/3	100%	nov 01	Fix initialization
SPAC slave	27	2 500	17/18	94%	feb 02	Mitigate SEU
Opamp	3	17 000	26/37*	70%*	nov 01	Add HF switch
DAC	6.3	130	18/19	94%	feb 02	Fix reference
Delay	6.5	260			None	final
TTCRx		2 100			None	final
BiMUX	4.6	8 320	65/80	81%	None	final

Summary

10 DMILL chips designed and produced in 2000-2001

- **3** MPW (MPW 471, MPW 511, MPW 533)
- 1 full engineering run (SCA)

7 digital chips

- **Yield > 80%**
- All designs final
- 2 chips have 0.25 μm DSM alternatives (SCAC, Gain select.)? Choice in Oct 01

3 analog chips

- Good performance (offset, leakage...)
- **Yield** > 65%

250 wafers needed for ATLAS in 2002

- ~ 200 for the SCA, PRR in oct 2001
- 33 shared wafers for 8 different chips : packaging issues