
The Fast Merging Module (FMM) for readout status processing in CMS DAQ

E. Canoa, S. Cittolina, A. Csillinga, S. Erhanb, D. Gigia, F. Glegea, M. Gulminia, J. Gutlebera, C. Jacobsa, M.

Kozlovszkya, H. Larsena, I. Magransa, F. Meijersa, E. Meschia, S. Murraya, A. Oha, L. Orsinia,

 L. Polleta, A. Racza, D. Samyna, P. Scharff-Hansena, C. Schwicka, P. Sphicasa,c, J. Varelaa

aCERN, Div. EP, Meyrin CH-1211 Geneva 23 Switzerland
bUniversity of California, Los Angeles, USA

cUniversity of Athens, Athens, Greece
Abstract

The Fast Merging Module (FMM) is part of the Trigger
Throttling System (TTS). The TTS adapts the trigger fre-
quency to the DAQ capacity in order to avoid congestions and
overflows. The states of all data sources (~640 in the case of
CMS) are read out and merged by the FMM to obtain the sta-
tus of each detector partition. The functionality and the design
of the FMM are presented in this paper.

I. INTRODUCTION

The TTS [1] is an element of the CMS data acquisition sys-
tem [2]. It regulates the Level 1 Accept trigger rate (LV1A) to
prevent overloading of any electronic devices in charge of
moving, processing, and storing the data from the very front-
end electronic down to the storage media. A global view of the
TTS is shown in Figure 1.

.

Figure 1: TTS global view

The Fast Merging Module receives and concentrates the states
of Front-End Drivers (FED). The FMMs produce a single state
per detector partition (see Table 1). The Trigger Control Sys-
tem (TCS) is able to handle 32 detector partitions. Based on
the states provided by the FMMs, the TCS will adapt the
LV1A rate if necessary.

FEDs can be in one of the six possible states: Ready, Busy,
Out-of-sync, Warning-Overflow, Failure, Disconnected (Fig-
ure 2). At startup, the device is in the Ready state. If the trigger
rate is too high, after some time depending on its buffering
capacity, the device will go in the Warning-Overflow state,

Table 1: Sub-systems and FMMs

Detector
(# of FEDs)

Partition
(# of FEDs per

partition)

of FMMs per
partition

of FMMs
per detector

Pixel
(38)

barrel (32),
forward (6)

1
1

2

Trackera

(440)
inner (114),
outer (134),
endcap+ (96)
endcap- (96)

4+1
5+1
3+1
3+1

19

Preshower
(~50)

SE+ (25)
SE- (25)

1
1

2

Electronic
Calorimeter

(54)

EB+ (18)
EB- (18)
EE+ (9)
EE- (9)

1
1
1
1

4

Hadronic
Calorimeter

(32)

HB+ (5)
HB- (5)
HE+ (5)
HE- (5)
HO+ (6)
HO- (6)

1
1
1
1
1
1

6

Muon DT
(5)

Barrel+
Barrel-

1
1

2

Muon RPC
(6)

Barrel+
Barrel-
Endcap+
Endcap-

1
1
1
1

4

Muon CSC
(8)

Endcap+ (4)
Endcap- (4)

1
1

2

Calo-trig
Glob-Muon,

Glob-trig

na
na
na

1
1
1

3

Muon trig CSC trig
DT trig

1
1

2

Total 31 (636) 46 46

a.one FMM is used to merge the first layer of FMMs

Table 1: Sub-systems and FMMs

Detector
(# of FEDs)

Partition
(# of FEDs per

partition)

of FMMs per
partition

of FMMs
per detector

indicating to the Trigger Control System (TCS) that the rate is
too high. If the trigger rate is not reduced, the device will enter
the Busy state indicating that any further trigger will be lost
leading to a loss of data with a possible loss of synchronization
(i.e. event counters located in the device are no more synchro-
nized with the central event counters located in the global trig-
ger logic). Some devices are designed such that they can drop
the data for a specific event but still stay synchronized. If the
device will go in the Out-of-sync state, it will remain there
until a resynchronization procedure is performed.

Figure 2: TTS state transition diagram

II. FMM FUNCTIONALITIES

As mentioned previously, the FMM is in charge of elabo-
rating the detector partition state from the device state.
Dead time generated by each device is monitored in real time.
A history memory stores the state changes along with a time-
tag: for monitoring purposes, a detailed analysis can be per-
formed.
Each input can be masked in the computation of the partition
state.

The output state of an FMM is computed from the inputs
and the associated merging function. The merging function
depends on the state to which it is applied. Currently, two func-
tions are used:

• a logical OR

• an arithmetic sum followed by a variable threshold

The logical OR is used when one device in a given state is
enough to set the whole partition in the same state. For exam-
ple, when a device of a partition is busy, all the partition is
declared to be busy.

The arithmetic sum combined with a threshold is used
when an action is required (i.e resynchronization procedure)
only when more than one device requires it. For example, it
would be inappropriate to resynchronize a partition when a
single device is out-of-sync.

These merging functions can be changed on request since
their logic is implemented in a Field Programmable Gate
Array (FPGA).
III. FMM PROTOTYPE IMPLEMENTATION

The logic of the FMM (see Figure 3) is implemented in an
FPGA from the Xilinx Spartan family. External to the FPGA
are only the Input/Output connectors, the history memory and
the control interface.

Figure 3: FMM block diagram

A. Input/Output connector

The connector is a standard RJ-45 network connector cho-
sen for its low-cost and high reliability. The pinout of the con-
nector is such that standard ethernet network cables can be
used to connect a device with the FMM. The signaling level on
the cable is LVDS. Built-in indicators allow to read directly the
status of the attached device.(see Figure 4).

Figure 4: Input connector with status indicators

B. History memory management

The history memory uses SDRAM components. To opti-
mize the usage of memory space, only state changes are writ-
ten into the memory along with a time tag: a module in the
FPGA continuously monitors the 128 input bits (32 devices
giving each 4 bits) sampled by a 40 MHz clock. At a given
point in time, if a 128-bit sample differs from the previous one,
the current 128-bit status is written into the memory along with
the 32-bit time tag. So for each state change, 20 bytes are writ-
ten into the history memory. The current memory on the FMM
is 16 MB or about 840 k-transitions. The time tag resolution is
6.4 µs: the delay before overwriting the history is ~ 7.5 hours.

C. FPGA logic

The FPGA block diagram is shown in Figure 5. From the
input states, the FPGA computes the output state according to
the merging functions. Its detects any state changes and fills up
the history memory. Before actually writing into the external
SDRAM, the states and the time-tag are first written to a small
internal FIFO queue of 15 events deep. The FIFO queue is
emptied to the SDRAM if no concurrent access from the con-
trol interface is taking place. This FIFO is also useful as a
buffer when bursty state transitions occur.

Figure 5: FPGA block diagram

D. Control interface

The control interface allows the user interaction with the
FMM: configuration of the internal registers (mask, threshold,
control/status), readout of the history memory, access to the
deadtime monitors. The control interface is based on the Tiny
InterNet Interface (TINI) [3]. The TINI platform is a combina-
tion of a chipset based on 8051 architecture and a Java pro-
grammable runtime environment. TINI’s networking
capability extends the connectivity of any attached device by
allowing interaction with remote systems through standard
network applications such as Web browsers.

The registers of the FPGA and the access to the history
memory are mapped into the TINI microcontroller memory
space.
Figure 6: Prototype picture

E. Control software

A Java monitor (TiniMon) is running on the TINI processor
and accepts commands either through a TCP socket based cus-
tom protocol or as http RPC requests (TiniMon is implemented
as a Web Server).
On the client side, a Java debugger (TiniDebugger) provides
basic FMM debugging facilities through a command line inter-
face. Commands can be written in a script file.
A C library has also been implemented to communicate with
TiniMon.

F. Performances

The measured transfer rate between the FPGA history
memory and the microcontroller is about 700 kB/sec and
20 kB/sec between the client side and the TINI module.
The time to access an FPGA register is about 1 second. These
limited performances are due to the TINI microcontroller pro-
cessing speed.

The hardware transmission delay from the input connector
to the output connector is 100 ns.

IV. FUTURE PLANS

The current prototype will be used by the CMS DAQ group
in the DAQ demonstrator [1]. A new prototype will be
designed including new requirements:

• access latency to the FPGA registers and specifically the
mask register must be in the range of a micro second. This
is driven by the need to mask quickly a device generating
too much deadtime, and hence penalizing the whole exper-
iment. This leads to a redesign of the board with a faster
control interface.

• real time state monitoring of a given device is an impor-
tant feature to detect potential or real problems. Hardware
monitoring modules will be incorporated but the FPGA
logic resources are no more adapted: a bigger FPGA will
be used for the next version.

V. SUMMARY

The first function of the Fast Merging Module is to per-
form logical and arithmetic operations on the input status
information and to provide an output result that can be merged
further to obtain the status of a detector partition. The second
function is to keep a history of the state changes and to allow a
monitoring of the data sources or a post-mortem analysis in the
event of a serious system error.
A second prototype will implement a faster control interface
and hardware monitoring engines for deadtime measurement.

VI. REFERENCES

[1] Trigger Throttling System for CMS DAQ, A. Racz
Proceedings of the sixth Workshop on electronics for LHC
experiments, Cracow, 11-15 September 2000.

[2] CMS: The TriDAS project
Technical Design Report Volume I, Volume II

[3] TINI home page
http://www.ibutton.com/TINI/index.html

	Abstract
	I. Introduction
	Figure 1 : TTS global view
	Table 1 : Sub-systems and FMMs
	Figure 2 : TTS state transition diagram

	II. FMM functionalities
	III. FMM prototype implementation
	Figure 3 : FMM block diagram
	A. Input/Output connector
	Figure 4 : Input connector with status indicators

	B. History memory management
	C. FPGA logic
	Figure 5 : FPGA block diagram

	D. Control interface
	Figure 6 : Prototype picture

	E. Control software
	F. Performances

	IV. Future plans
	V. Summary
	VI. References
	[1] Trigger Throttling System for CMS DAQ, A. Racz Proceedings of the sixth Workshop on electroni...
	[2] CMS: The TriDAS project Technical Design Report Volume I, Volume II
	[3] TINI home page http://www.ibutton.com/TINI/index.html

	The Fast Merging Module (FMM) for readout status processing in CMS DAQ
	E. Canoa, S. Cittolina, A. Csillinga, S. Erhanb, D. Gigia, F. Glegea, M. Gulminia, J. Gutlebera, ...
	aCERN, Div. EP, Meyrin CH-1211 Geneva 23 Switzerland bUniversity of California, Los Angeles, USA ...

