
Control and Monitoring of the Front-End Electronics in ALICE

Peter Chochula, Lennart Jirdén, André Augustinus

CERN, 1211 Geneva 23, Switzerland
Peter.Chochula@cern.ch

II. ARCHITECTURE OF ALICE ONLINE SYSTEMS Abstract
Four systems are responsible for online operation of

the ALICE sub-detectors: the Data Acquisition (DAQ),
Trigger (TRG), High Level Trigger (HLT) and Detector
Controls (DCS). Each system is partitioned following the
ALICE detector architecture allowing for independent
operation of individual sub-detectors and associated services.

This paper describes the configuration and
monitoring scheme, which is being developed for the ALICE
Front-End Electronics (FEE). The scheme is common to all
ALICE sub-detectors although each sub-detector has a
different FEE architecture. It is based on a Front-End Device
(FED) model, which removes the differences between the
various systems and enables a common control approach to be
applied. An implementation of the FED for the ALICE
Silicon Pixel Detector is described.

DCS for each sub-detector is segmented into sub-systems.

It treats the high voltage (HV), low voltage (LV), cooling, gas
control and FEE individually. DCS coordinates operation of
its sub-systems. I. INTRODUCTION

 The ALICE experiment is designed for studies of
heavy ion collisions at LHC energies. Requirements on
excellent tracking precision, high momentum resolution and
particle identification has lead to a relatively complex
experiment design. Different detector technologies including
silicon tracking detectors, TPC, Cherenkov detectors,
transition radiation detectors, etc. are being implemented to
satisfy the physics requirements. Sub-detectors have the
Front-End Electronics (FEE) architectures optimized to their
needs. Differences in their operation modes impose a broad
spectrum of demands towards the online systems.

The device control and monitoring strategy in

ALICE is focused on standardizing to the maximum possible
extent. The choice of power supplies or monitoring systems
(PLC, ELMB) is centrally coordinated and common solutions
are proposed wherever applicable. The domain of FEE
represents a significant complication to this approach.

Figure 1: Hierarchical software architecture of ALICE online
systems

Interaction between all online systems strictly follows the

hierarchical structure. Exchange of commands and
information is coordinated by the Experiment Control System
(ECS) (Figure 1).

Most of the ALICE sub-detectors based their FEE

architecture on custom chips involving a large amount of
parameters which need to be configured, controlled and
monitored. Many different techniques are deployed to
communicate with these chips (including JTAG, Ethernet,
Easynet, GOL, Profibus, CANbus etc.), each requiring a
different access strategy from the online systems.

III. ALICE FRONT-END ARCHITECTURES
The first step in establishing a control and

monitoring strategy for FEE’s is identification of
commonalities between the different hardware architectures.
Grouping of sub-detectors into categories is based on access
path used to download and retrieve data.

The Front-End Device (FED), described in this

paper, provides a solution to this problem by representing the
different FEE’s as a device which reacts to a set of standard
commands and publishes gathered data. The FEE
architectures are in this way made transparent to higher
software levels.

The standard link for collecting physics data in

ALICE is the Detector Data Link (DDL) [1]. It also provides
functionality for downloading configuration information.
However, some of the sub-detectors do not use this option.

The FEE architectures are subdivided into the

following four control and monitoring strategy classes:
• Class A: DDL is used for FEE control.
• Class B: DDL is used for FEE control and in addition an

alternative path connected to DCS, using different
technology, is implemented. In some cases both DDL and
non-DDL technologies are used simultaneously, sending
a part of the data using either path.

• Class C: control of the FEE is performed by the DCS
exclusively.

• Class D: the same as class C, however, the control and
monitoring share the same path and an access arbitration
scheme is needed.

All four classes use an additional access path for

monitoring. For class D this is shared with control tasks.
Communication using DDL is treated by the DAQ software
package; all remaining technologies are covered by the DCS
using the concept of the FED.

IV. THE FRONT-END DEVICE (FED)
The FED (Figure 2) represents a hardware

abstraction layer allowing DCS transparent access to the FEE.
It responds to standard commands and performs requested
tasks such as loading configuration registers, resetting the
chips etc. If the FEE provides data which needs to be
monitored, this is gathered by the FED and made available to
the supervising software.

The FED is built as a bundle of software and

hardware with a standardized software interface. The
Distributed Information Management System (DIM) [2] has
been chosen as communication software allowing for network
transparent communication.

Figure 2: Architecture of the Front-End Device

A client-server communication model has been

implemented for the FED. The server communicates with the
hardware and publishes data in form of services. A client can
subscribe to services and send commands to the server.

Several clients can subscribe to the same server in parallel
allowing for distributed monitoring.

The heart of the FED software is the FED server

which is structured in three main layers. The highest layer is
the DIM server, which provides the communication interface
to the remote control system. The middle layer (sub-detector
custom code) is translating standard commands received from
DIM to sub-detector specific actions. Its role is also to process
data provided by the FEE and transmit it to the DIM server.
Finally, the bottom layer (the hardware access layer) provides
access to the hardware itself. It communicates with the
hardware controller of the implemented bus and is usually
built using commercial components.

Parameters gathered by the FED are published as

DIM services. The DCS client subscribes to these services at
server start-up time and treats received data according to
recipes reflecting the sub-detector requirements.

Using the features of the DIM protocol, DCS is

able to evaluate communication status and distinguish
between very low activity environment (thus not providing
updates) and communication problems. After restarting any of
the involved DIM components, the communication is re-
established automatically.

Data published by the server can be grouped in two

categories: General data provided by every FED (such as
errors, warnings, internal server status) and sub-detector
specific data (e.g. internal trigger counters, voltages,
temperatures etc.). Similar to this we distinguish between
General and sub-detector specific commands.

V. IMPLEMENTATION OF FED FOR THE ALICE
SILICON PIXEL DETECTOR (SPD)

The ALICE Silicon Pixel detector (SPD) [3] has
been chosen for evaluation of the above described approach.
Using this sub-detector as an example we will describe basic
architectural and functional features of the FED.

Figure 3: Operation modes of the ALICE Silicon Pixel Detector

The ALICE SPD has a relatively complicated FEE

architecture. The basic readout unit, a half-stave, is formed by
two pixel sensors each serviced by five bump-bonded
ALICE1 readout chips. A carrier bus connects these chips to
the multichip module (MCM). All chips are controlled and
monitored using the JTAG bus. In order to avoid noise
injection during physics run, the JTAG bus can be
reconfigured by the MCM in such a way, that it does not enter
the readout chips. It still services the MCM and is used for
periodical reading of voltages and currents. Only when the
ALICE1 chips need to be accessed (at start-up, after recovery
from voltage regulator failure or SEU etc.) the JTAG bus is
reconfigured and services also this part of a half-stave
(Figure 3).

A group of six half-staves is connected via optical

links (running over 100 metres) to a VME Router board
which communicates with DAQ, DCS and Trigger systems.
There are in total twenty routers servicing the whole SPD
(Figure 4).

The VME bus of the router modules is allocated to

the DCS. Physical connection between the control computer
and VME crate is based on PCI-VME bridge (the National
Instruments MXI-2 technology) using NI-VISA and NI-VXI
as a software driver [4, 5]. The NI-VISA also forms the
lowest layer of SPD FED server.

The SPD FED server is implemented on Windows

operating system. The code is written in C++ using the Visual
Studio.Net as development environment.

The SPD detector specific code is based on agents,

which are implemented as separate program threads.
Monitoring Agents (MA) perform periodical reading of
desired parameters (MCM voltages and currents, SPD
temperatures, status flags of voltage regulators etc.). Gathered
values are published via DIM and sent to all subscribed
clients. In order to minimize network traffic, only values
exceeding predefined limits are published. The limits are set
by the DCS client at start-up and can be modified during
running in case that it is required by SPD conditions.

Control Agents (CA) are interpreting commands

received from DIM. Recognized general commands include
setting of monitoring frequencies and limits, FEE
initialization and request for publishing server operation
parameters.

On request a dedicated CA can initialize the SPD

FEE. This is a general command recognized by each sub-
detector; however, its implementation is dependent on the
hardware architecture. All required data is loaded from the

configuration database. In the case of SPD this data includes
settings for 42 DACs implemented on each of the 1200
ALICE1 chips and local settings (threshold adjustment, mask
and test register) for each of the 10 million pixels. The
configuration database holds the settings for each chip,
however, in order to limit the amount of data to manipulate,
only the differences from an ideal reference chip are
registered. In this case the required data is compressed by a
factor of 40.

Figure 4: Hardware components of the SPD readout and control

system

Connection to the database is implemented using

the ADO technology [6], which makes the FED server
independent from the type of underlying database used.
Successful tests were performed using MySQL, SQL Server,
MS Access and Oracle databases without having to change
the FED server code.

SPD specific commands enable control of agent

execution. For safety reasons, all monitoring agents are
suspended at FED server start-up. A dedicated agent first
verifies the status of the bus and communicates this to DCS,
which can decide to start monitoring by issuing a
corresponding command. Suspending of the MA’s is typically
required to avoid collisions when accessing the ALICE1
chips. This is managed by the FED server, which also restarts
the agents after completion of a command execution. At start-
up the FED server locks VISA resources and effectively
disables hardware access from any other software. This
protects the sub-detector against incorrect use of software.

The internal status of agents is indicated to DCS by

dedicated DIM service. If an agent remains in suspended state
for a long time the DCS can take corrective actions.

Figure 5: Structure of the FED server implemented for ALICE SPD

All server actions result in messages indicating

success, failure, errors, warnings and debugging information.
All messages are published as DIM services. In order to
protect the DCS client from message flooding, the
information complexity can be tuned. In normal operation
only errors, failures and warnings are published. Optionally,
the messages can be logged into a local file or attached to the
Windows system event logger.

As the FED server remains the one and only access

point to the FEE, it must provide any additional functionality
required for sub-detector operation or tuning. These functions
are implemented in form of sub-detector specific commands
and executed as CA. SPD implements additional commands
for checking the integrity of its JTAG bus, for SEU
monitoring and recovery, for detector calibration and for local
scans.

VI. INTEGRATION OF FED INTO THE DCS
SYSTEM

The main DCS operational tool is the SCADA
system PVSS II complemented by a framework of tools [7]
providing the necessary DIM functionalities. DCS is the main
subscriber of FED data and is the only online system sending
commands to the FEE via the FED. As some information
published by the FED might be relevant to other online
systems (e.g. internal trigger counters or readout status),
clients outside DCS are allowed to subscribe to its services.
Custom clients are typically implemented in C++, C or Java.
Universal clients such as DID or DimTree (included in DIM
distribution) are very useful for remote monitoring without
the need of installing PVSS II system or writing custom
software.

DCS related information provided by FED’s (e.g.

voltages or temperatures) is treated in the same way as

information originating in any other device. If acquired values
exceed predefined limits, DCS will pass this information to
the operator and execute pre-programmed actions.
Overheating of a module will for example result in switching
off the corresponding LV channels, keeping the rest of the
sub-detector operational. This approach is much more
efficient for the experiment than interlocking the whole
affected sub-detector.

The DCS is describing operation of its sub-systems

and devices in terms of finite state machines, using the SMI++
framework [8]. This approach is also used for the FED
allowing easy integration into DCS.

The SMI++ interface simplifies the task of

synchronization between different sub-systems. For example,
the FED moves into a state allowing for receiving of
commands only after the corresponding low voltage becomes
ready. Similar to this if the LV system indicates an error (e.g.
voltage regulator over current condition), the FED moves to a
Not-Ready state and waits for a command to reconfigure
affected chips.

The state machine approach is further extended up

to the ECS which allows for communication between online
systems and maintains integrity of the whole experiment.

VII. CONCLUSIONS

A strategy for control and monitoring of different

FEE architectures has been defined and successfully
prototyped. The concept of the Front-End Device (FED)
provides abstraction from the underlying hardware and allows
for transparent access to sub-detector FEE.

Prototype implementation of the FED for the

ALICE SPD shows encouraging results. Using a sub-detector
having one of the most complex FEE architectures in terms of
control and monitoring the concept enabling transparent
access to detector hardware has been validated.

The described approach can be further extended to

any devices which need to be remotely controlled or
monitored. In ALICE it will be implemented for example for
non-standard power supplies, or stepper motor control of
calibration systems.

VIII. REFERENCES

[1] ALICE-INT-1998-21 v.1.3, ALICE DDL - Hardware
Guide for the front-end Designers
[2] C.Gaspar et al. “DIM, a Portable, Light weight Package
for Information Publishing, Data Transfer and Inter-process

Communication”, International Conference on Computing in
High Energy and Nuclear Physics (Padova, Italy, 1-11
February 2000)
[3] P.Chochula et al. “The ALICE Silicon Pixel detector”,
NIM A715 (2003),849c
[4] http://www.ni.com/pdf/products/us/0vxv136a.pdf
[5] http://www.ni.com/pdf/manuals/321228a.pdf
[6] Data Access Technologies, http://msdn.microsoft.com
[7] http://itco.web.cern.ch/itco/ProjectsServices/JCOP
[8] B.Franek and C.Gaspar : “SMI++ Object Oriented
framework for designing Distributed Control Systems”
Presented at: Xth IEEE Real Time Conference 97 (Beaune,
France, Sep 22-26 1997)

http://msdn.microsoft.com/

