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II. ARCHITECTURE OF ALICE ONLINE SYSTEMS Abstract 
Four systems are responsible for online operation of 

the ALICE sub-detectors: the Data Acquisition (DAQ), 
Trigger (TRG), High Level Trigger (HLT) and Detector 
Controls (DCS). Each system is partitioned following the 
ALICE detector architecture allowing for independent 
operation of individual sub-detectors and associated services. 

This paper describes the configuration and 
monitoring scheme, which is being developed for the ALICE 
Front-End Electronics (FEE). The scheme is common to all 
ALICE sub-detectors although each sub-detector has a 
different FEE architecture. It is based on a Front-End Device 
(FED) model, which removes the differences between the 
various systems and enables a common control approach to be 
applied. An implementation of the FED for the ALICE 
Silicon Pixel Detector is described. 

 
DCS for each sub-detector is segmented into sub-systems. 

It treats the high voltage (HV), low voltage (LV), cooling, gas 
control and FEE individually. DCS coordinates operation of 
its sub-systems.  I. INTRODUCTION 

 The ALICE experiment is designed for studies of 
heavy ion collisions at LHC energies. Requirements on 
excellent tracking precision, high momentum resolution and 
particle identification has lead to a relatively complex 
experiment design. Different detector technologies including 
silicon tracking detectors, TPC, Cherenkov detectors, 
transition radiation detectors, etc. are being implemented to 
satisfy the physics requirements. Sub-detectors have the 
Front-End Electronics (FEE) architectures optimized to their 
needs. Differences in their operation modes impose a broad 
spectrum of demands towards the online systems.  

 

 
The device control and monitoring strategy in 

ALICE is focused on standardizing to the maximum possible 
extent. The choice of power supplies or monitoring systems 
(PLC, ELMB) is centrally coordinated and common solutions 
are proposed wherever applicable. The domain of FEE 
represents a significant complication to this approach.  

Figure 1: Hierarchical software architecture of ALICE online 
systems 

 
Interaction between all online systems strictly follows the 

hierarchical structure. Exchange of commands and 
information is coordinated by the Experiment Control System 
(ECS) (Figure 1). 

 
Most of the ALICE sub-detectors based their FEE 

architecture on custom chips involving a large amount of 
parameters which need to be configured, controlled and 
monitored. Many different techniques are deployed to 
communicate with these chips (including JTAG, Ethernet, 
Easynet, GOL, Profibus, CANbus etc.), each requiring a 
different access strategy from the online systems.  

III. ALICE FRONT-END ARCHITECTURES 
The first step in establishing a control and 

monitoring strategy for FEE’s is identification of 
commonalities between the different hardware architectures. 
Grouping of sub-detectors into categories is based on access 
path used to download and retrieve data.  

 
The Front-End Device (FED), described in this 

paper, provides a solution to this problem by representing the 
different FEE’s as a device which reacts to a set of standard 
commands and publishes gathered data. The FEE 
architectures are in this way made transparent to higher 
software levels. 

 
The standard link for collecting physics data in 

ALICE is the Detector Data Link (DDL) [1]. It also provides 
functionality for downloading configuration information. 
However, some of the sub-detectors do not use this option.  

 



 
The FEE architectures are subdivided into the 

following four control and monitoring strategy classes: 
• Class A: DDL is used for FEE control. 
• Class B: DDL is used for FEE control and in addition an 

alternative path connected to DCS, using different 
technology, is implemented. In some cases both DDL and 
non-DDL technologies are used simultaneously, sending 
a part of the data using either path. 

• Class C: control of the FEE is performed by the DCS 
exclusively.  

• Class D: the same as class C, however, the control and 
monitoring share the same path and an access arbitration 
scheme is needed. 

 
All four classes use an additional access path for 

monitoring. For class D this is shared with control tasks. 
Communication using DDL is treated by the DAQ software 
package; all remaining technologies are covered by the DCS 
using the concept of the FED. 

IV. THE FRONT-END DEVICE (FED) 
The FED (Figure 2) represents a hardware 

abstraction layer allowing DCS transparent access to the FEE. 
It responds to standard commands and performs requested 
tasks such as loading configuration registers, resetting the 
chips etc. If the FEE provides data which needs to be 
monitored, this is gathered by the FED and made available to 
the supervising software. 

 
The FED is built as a bundle of software and 

hardware with a standardized software interface. The 
Distributed Information Management System (DIM) [2] has 
been chosen as communication software allowing for network 
transparent communication. 

 
Figure 2: Architecture of the Front-End Device 

 
A client-server communication model has been 

implemented for the FED. The server communicates with the 
hardware and publishes data in form of services. A client can 
subscribe to services and send commands to the server. 

Several clients can subscribe to the same server in parallel 
allowing for distributed monitoring. 

 
The heart of the FED software is the FED server 

which is structured in three main layers. The highest layer is 
the DIM server, which provides the communication interface 
to the remote control system. The middle layer (sub-detector 
custom code) is translating standard commands received from 
DIM to sub-detector specific actions. Its role is also to process 
data provided by the FEE and transmit it to the DIM server. 
Finally, the bottom layer (the hardware access layer) provides 
access to the hardware itself. It communicates with the 
hardware controller of the implemented bus and is usually 
built using commercial components. 

 
Parameters gathered by the FED are published as 

DIM services. The DCS client subscribes to these services at 
server start-up time and treats received data according to 
recipes reflecting the sub-detector requirements.  

 
Using the features of the DIM protocol, DCS is 

able to evaluate communication status and distinguish 
between very low activity environment (thus not providing 
updates) and communication problems. After restarting any of 
the involved DIM components, the communication is re-
established automatically. 

 
Data published by the server can be grouped in two 

categories: General data provided by every FED (such as 
errors, warnings, internal server status) and sub-detector 
specific data (e.g. internal trigger counters, voltages, 
temperatures etc.). Similar to this we distinguish between 
General and sub-detector specific commands.  
 

V. IMPLEMENTATION OF FED FOR THE ALICE 
SILICON PIXEL DETECTOR (SPD) 

The ALICE Silicon Pixel detector (SPD) [3] has 
been chosen for evaluation of the above described approach. 
Using this sub-detector as an example we will describe basic 
architectural and functional features of the FED. 

 
Figure 3: Operation modes of the ALICE Silicon Pixel Detector 



 
The ALICE SPD has a relatively complicated FEE 

architecture. The basic readout unit, a half-stave, is formed by 
two pixel sensors each serviced by five bump-bonded 
ALICE1 readout chips. A carrier bus connects these chips to 
the multichip module (MCM). All chips are controlled and 
monitored using the JTAG bus. In order to avoid noise 
injection during physics run, the JTAG bus can be 
reconfigured by the MCM in such a way, that it does not enter 
the readout chips. It still services the MCM and is used for 
periodical reading of voltages and currents. Only when the 
ALICE1 chips need to be accessed (at start-up, after recovery 
from voltage regulator failure or SEU etc.) the JTAG bus is 
reconfigured and services also this part of a half-stave 
(Figure 3). 

 
A group of six half-staves is connected via optical 

links (running over 100 metres) to a VME Router board 
which communicates with DAQ, DCS and Trigger systems. 
There are in total twenty routers servicing the whole SPD 
(Figure 4). 

 
The VME bus of the router modules is allocated to 

the DCS. Physical connection between the control computer 
and VME crate is based on PCI-VME bridge (the National 
Instruments MXI-2 technology) using NI-VISA and NI-VXI 
as a software driver [4, 5]. The NI-VISA also forms the 
lowest layer of SPD FED server.  

 
The SPD FED server is implemented on Windows 

operating system. The code is written in C++ using the Visual 
Studio.Net as development environment. 

 
The SPD detector specific code is based on agents, 

which are implemented as separate program threads. 
Monitoring Agents (MA) perform periodical reading of 
desired parameters (MCM voltages and currents, SPD 
temperatures, status flags of voltage regulators etc.). Gathered 
values are published via DIM and sent to all subscribed 
clients. In order to minimize network traffic, only values 
exceeding predefined limits are published. The limits are set 
by the DCS client at start-up and can be modified during 
running in case that it is required by SPD conditions.  

 
Control Agents (CA) are interpreting commands 

received from DIM. Recognized general commands include 
setting of monitoring frequencies and limits, FEE 
initialization and request for publishing server operation 
parameters. 

 
On request a dedicated CA can initialize the SPD 

FEE. This is a general command recognized by each sub-
detector; however, its implementation is dependent on the 
hardware architecture. All required data is loaded from the 

configuration database.  In the case of SPD this data includes 
settings for 42 DACs implemented on each of the 1200 
ALICE1 chips and local settings (threshold adjustment, mask 
and test register) for each of the 10 million pixels.  The 
configuration database holds the settings for each chip, 
however, in order to limit the amount of data to manipulate, 
only the differences from an ideal reference chip are 
registered. In this case the required data is compressed by a 
factor of 40.  

 
Figure 4: Hardware components of the SPD readout and control 

system 

 
Connection to the database is implemented using 

the ADO technology [6], which makes the FED server 
independent from the type of underlying database used. 
Successful tests were performed using MySQL, SQL Server, 
MS Access and Oracle databases without having to change 
the FED server code. 

 
SPD specific commands enable control of agent 

execution. For safety reasons, all monitoring agents are 
suspended at FED server start-up. A dedicated agent first 
verifies the status of the bus and communicates this to DCS, 
which can decide to start monitoring by issuing a 
corresponding command. Suspending of the MA’s is typically 
required to avoid collisions when accessing the ALICE1 
chips. This is managed by the FED server, which also restarts 
the agents after completion of a command execution. At start-
up the FED server locks VISA resources and effectively 
disables hardware access from any other software. This 
protects the sub-detector against incorrect use of software.  

 
The internal status of agents is indicated to DCS by 

dedicated DIM service. If an agent remains in suspended state 
for a long time the DCS can take corrective actions.  



 
Figure 5: Structure of the FED server implemented for ALICE SPD 

 
 
All server actions result in messages indicating 

success, failure, errors, warnings and debugging information. 
All messages are published as DIM services. In order to 
protect the DCS client from message flooding, the 
information complexity can be tuned. In normal operation 
only errors, failures and warnings are published.  Optionally, 
the messages can be logged into a local file or attached to the 
Windows system event logger.       

 
As the FED server remains the one and only access 

point to the FEE, it must provide any additional functionality 
required for sub-detector operation or tuning. These functions 
are implemented in form of sub-detector specific commands 
and executed as CA. SPD implements additional commands 
for checking the integrity of its JTAG bus, for SEU 
monitoring and recovery, for detector calibration and for local 
scans.  
 

VI. INTEGRATION OF FED INTO THE DCS 
SYSTEM 

The main DCS operational tool is the SCADA 
system PVSS II complemented by a framework of tools [7] 
providing the necessary DIM functionalities. DCS is the main 
subscriber of FED data and is the only online system sending 
commands to the FEE via the FED. As some information 
published by the FED might be relevant to other online 
systems (e.g. internal trigger counters or readout status), 
clients outside DCS are allowed to subscribe to its services. 
Custom clients are typically implemented in C++, C or Java. 
Universal clients such as DID or DimTree (included in DIM 
distribution) are very useful for remote monitoring without 
the need of installing PVSS II system or writing custom 
software.  

 
DCS related information provided by FED’s (e.g. 

voltages or temperatures) is treated in the same way as 

information originating in any other device. If acquired values 
exceed predefined limits, DCS will pass this information to 
the operator and execute pre-programmed actions. 
Overheating of a module will for example result in switching 
off the corresponding LV channels, keeping the rest of the 
sub-detector operational. This approach is much more 
efficient for the experiment than interlocking the whole 
affected sub-detector.   

 
The DCS is describing operation of its sub-systems 

and devices in terms of finite state machines, using the SMI++ 
framework [8].  This approach is also used for the FED 
allowing easy integration into DCS. 

 
The SMI++ interface simplifies the task of 

synchronization between different sub-systems. For example, 
the FED moves into a state allowing for receiving of 
commands only after the corresponding low voltage becomes 
ready.  Similar to this if the LV system indicates an error (e.g. 
voltage regulator over current condition), the FED moves to a 
Not-Ready state and waits for a command to reconfigure 
affected chips.   

 
The state machine approach is further extended up 

to the ECS which allows for communication between online 
systems and maintains integrity of the whole experiment. 
 

VII. CONCLUSIONS 
 
A strategy for control and monitoring of different 

FEE architectures has been defined and successfully 
prototyped. The concept of the Front-End Device (FED) 
provides abstraction from the underlying hardware and allows 
for transparent access to sub-detector FEE. 

 
Prototype implementation of the FED for the 

ALICE SPD shows encouraging results. Using a sub-detector 
having one of the most complex FEE architectures in terms of 
control and monitoring the concept enabling transparent 
access to detector hardware has been validated. 

 
The described approach can be further extended to 

any devices which need to be remotely controlled or 
monitored. In ALICE it will be implemented for example for 
non-standard power supplies, or stepper motor control of 
calibration systems.  
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