The Rack Wizard,
a graphical database interface for electronics configuration

F. Glege

CERN, 1211 Geneva 23, Switzerland
Frank.Glege@cern.ch

ABSTRACT

A substantial amount of electronics is needed in CMS to
provide the required running environment, digitize the
detector information and forward it to the data acquisition
system. The information concerning all aspects of this
electronics needs to be kept in a data base. The layout of the
electronics must fulfil certain constraints. Tracking the
compliance of the layout with those constraints in an evolving
setup is time consuming and non trivial. A tool has been
developed, called “Rack Wizard”, which offers a graphical
configuration of the electronics layout in a drag and drop
style. That provides entry into an Oracle database. It
automatically applies certain constraints and the visualization
allows, for instance, the identification of hot spots.

DATABASES IN CMS

The CMS experiment at CERN will use databases to store
nearly all data describing the detector, being used by the
detector or being produced by the detector. The data is
classified in five groups which differ in there requirements on
database logistics, performance and data volume. The
following paragraphs will shortly describe these groups called
databases in the following. Since the interface, which is the
subject of this document acts on the equipment management
database, the latter will be described more in detail.

A. Constructions databases

Each sub detector has his construction database. It
contains data concerning the detector construction.
Information on the fabrication and testing of detector
components is stored here as well as logistical information.
These databases will not be used by the experiment online
system. However, parts of the stored data will be copied to the
databases described in the following. After the detector
installation is finished, the constructions databases will
mainly be used for error analysis by the sub detectors.

B. Configuration database

The configuration database will store all data necessary to
put the detector in any running condition. It mainly consists of
highly detector specific parameters for electronics
configuration. The amount of data to be extracted per
configuration varies from a few kilobytes to a gigabyte
depending on the detector. The performance requirements are
therefore not negligible since the configuration process should
be as short as possible.

C. Conditions database

The conditions database will hold all data describing the
running conditions of the detector. The main part of the
conditions data will be necessary for physics event
reconstruction. Other data will be used for error tracking.

D. Equipment management database

The equipment management database will hold all data
describing the physical layout of the detector system. This
includes the sub detector parts as well as the off detector
electronics. A history of all item locations will be kept to
allow for asset tracking. It is assumed that the contained data
will only be used in the initial setup of the detector electronics
after switching on the power. Therefore performance is not an
issue for this database. The current implementation is done in
ORACLE[3] since it is the supported database system at
CERN and seems to fulfil all requirements.

1) Content

Actual examples of items described in this database are
racks, crates, boards, channels, cables, detector parts, etc. The
underlying data model is based on the idea of slots and
instances to fill them. The slots describe the geometry of
locations to be occupied by the item classes as well as there
relations. The instances describe there specific parameters as
well as there actual size and location in terms of slots of there
parents. The smallest slot is currently a cable connector. The
cables provide the connection between the otherwise distinct
hierarchical trees of detector parts on one side and the
detector electronics on the other side.

2) Procedures

The database write access is restricted by an authentication
mechanism. Each item belongs to a user group and only
members of the appropriate group are allowed to change the
properties of an item.

The database keeps a history of all item locations. This
allows calculating an irradiation dose for each item depending
on its position and the time it was at this position. An
electronic logbook contained in the database offers to
comment each location change of the items. This produces a
functioning/repair history for all items which allows to find
quality problems.

3) Item properties

The geometry and location of each item is contained in the
database. This allows for visualization as well as for checking
of inconsistent placement, e.g. overlapping. Signal path
lengths can be calculated as well using this information. For
electronics components the power requirements (supplied
power and dissipated power) are stored. This allows for
calculating the overall power and cooling needs and helps
finding possible hot spots.

THE DATABASE INTERFACE

Creating and maintaining the electronics configuration of
an experiment of the size of CMS represents a large amount
of work. After entering the hundred thousands of parameters,
they have to be checked for consistency and maintained over
the lifetime of the experiment. Although it might have been
possible to store this amount of data in a simple persistent
storage like an excel file, the checking and the maintenance
would have been virtually impossible. The need for a database
as storage medium is therefore obvious. The database contains
integrity checks and it provides sophisticated mechanisms for
data maintenance. To prevent the users from having to know
about these mechanisms, a user interface “Rack Wizard” has
been developed which translates the use of these mechanisms
into intuitive, visual dragging and dropping.

A. The concept

One requirement for the implementation has been to
separate the visualization from the content to make the tool as
universal as possible. The rack Wizard therefore provides a
kind of container, which offers the infrastructure for the data
handling. The hierarchical organization and navigation is also
provided. Plug in like components handle specific
configurations of item classes and provide the information
about the direct relation of instances to the hierarchy
mechanism. The separation of structure and items allowed for
an object oriented design and to profit from the mechanisms
of an object oriented programming language.

B. The implementation

JAVA has been chosen as programming language for the
Rack Wizard since it is independent of the operating system.
For many users the tool is therefore usable without any
additional configuration which increases the acceptance. The
communication protocol between the interface and the
database is XML (Extensible markup language)[1] over http
(hypertext transfer protocol)[2]. Since the http is used in the
same way as for usual web access, it is possible to use the
Rack Wizard even from behind firewalls. http is fully
supported by JAVA and the ORACLE application server (the
ORACLE web server). XML is available in the application
server and therefore only a simple xml handler had to be
developed in JAVA, to keep the application footprint small.

The application is separated in a loader that only loads the
main application from a web page and starts it and the main
application. Therefore any change to the main application
does not require any more action by the user than restarting
the Rack Wizard to become active which eases the
maintenance. The reflection mechanisms in JAVA allow
furthermore assembling the main application from classes
distributed in different places. This allows for a
personalization of the tool by only providing a private class in
a separate location. An adaptation of the Rack Wizard to other
experiments has been very simple that way.

C. The main container

The main container provides the basic, item content
independent infrastructure (see Figure 1). The frame title
shows the logged in user. A selection mechanism for different
item hierarchies and their visualizations including the
navigation mechanism is shown on the left. The right part is
dedicated to the specific item visualization, a rack in the
example of Figure 1. Two other examples are shown in Figure
2 and Figure 3.

1) The database access

The infrastructure provided by the main container
comprises a common database access which decouples the
components from the database implementation. The Rack
Wizard components request data sets from the database
interface, which then provides those as a graphical table. This
table provides easy access to the contained data and can be
visualized immediately. Additions to the data structure of an
item class do not require therefore any change of the
application to become visible.

The user can change the parameters in the table through
the table visualization. To update the database, the table can
then be sent back to the database interface, which will apply
the changes.

2) The template container

Each item class can create a template container. The
container will automatically load the item templates from the
database and provide a visualization of those. By dragging
templates from the container and dropping them into a parent
item, an instance of the template is created. The instances can
either be independent or references of to the template. In the
latter case the instances themselves can not be configured
separately but the configuration of the template is applied to
all its references.

3) Labels

Each item in CMS will have a unique identifier called label.
Although it’s up to the specific item handlers to create this
label, since the rule for the label creation depends on the item
class, the infrastructure for reading and printing labels will be
provided by the main container.

ack compositor. - User: Geoffrey Hall

File Edit Tools Help

4+ | k4| @ Move mode [Copy mode Memory usage:
[4[] BN

I Racks bt

P CIcms
& 7 Building 32
9 s
@ [51401
& [51402
& [51403
&9 51404
@[51405
©] 51A06
e 3 51207
@[3 51A08
& [51409
e[51810
oI 51a11 S
& [J51412 |
& 51413 | 30
e [CI51A414 | 2
& [51E01 A4 26
€[51B02 24
e~ s1803 22 [eaf eechanger -
& [516804
o [51B05
©-] 51B06
@[3 51807
& 51608 :
& 51E09 |12
e[51810 1 10
eI 51eM1 ! g HEafsechonmer |
e[51B12
e[51E13
eI 51E14
& 3 5101

CMS - S1-S1C03 -

Rack 51C03
Detactor Tracker
Usage FED TOB
Responsihle GHALL
Comment
Last change 971972003 10:24:54
Fower supplied [k 0
Fower dissipation [kw] 4.68
Fower dissipation to air [kw] 0.0

56-
54
52.
50- Heat exchanger |
48-
46-
44
42
40-
38.
36- Heat ezchanger |

Comment history:
F=19.09.2003 10:24 (GHALL) Added a heat exchanger to the top of the rack, to cool the air
Mow going down the rack side.
F=13.06.2003 18:47 (GHALL) null
F=13.06.2003 18:44 (GHALL) Putin patch panels to make room for aptical cabling. Remao
ed heat-exchanger from above top FED crate.

Figure 1: Rack Wizard main container

a B c D E F G H
ME-2 Mot installed ste01 s1co1 s1001 ste0 str01 s1001 st
ban ban Tader opt. ol P reshauer ot Pivel
oan oan rec ont. o rec RossC Controtz
Racz Racz GHALL VARELL BARNEYD wiLLMOT HORISBER
Installed 51802 s1co2 s1002 s1E02 s1F02 F1002 $1HOZ
Trackar Tatkar Tradar Tre or Pl Tradkar
FED TIB TID FED TOB FEC TG rack finger FEC Ponersupply
GHALL GHALL GHALL TROSKAIK eroR HomiseER: AL
ste03 s1o0 s1003 stem str03 s1003
Tradkar Trackar rpe e or il
FE0 T TID ¢e0 108 Tiigger e wackfindar
AL GHALL RANERI TROSKAIK EROUR HOFISEER:

S804 sicoa 1004, 104 1004
Traer Traker RPe Global Pical

FED TIB TID FED TOB Trigger Trigger rep
GHALL GHALL RANIER TAURDK HoRISEER
51808 s1cos 51008 s1F0s s1008
o i RPe cse oAG

™ ™ Trigger tack finder bAg
Racz Racz RANIER TYLNG Racz

5108 51808 s1cos 51008 s1E08 stFoe 1008 s1hos
Tradar DA RPC 18 csc csc
FED PC: Dan Trigger TS tack finder fep
SHALL RACZ RANIER] RAcz TYLING TYLNG
s1a07 51607 stco 51007 s1E07 stFo7 51607 s1Ho7
Tracker Dan Daa RPC 1S csc Tradar
P omersupply pan DAn Trigger 1S pan FED Fonersupply
Racz Racz RANIER Racz Racz TvuNG oHALL
s1808 sicos 51008 s1E08 stFos 1008 s1hos
Trasher Trasher RPC LHe RPC endoap csc Tradker
FED TEC: FED TEC Trigger BP T rep Ponersupply
GHALL. GHALL RANIER] WSHMITH RANIER] TYLNG GHALL
51800 sicon 51009 s1E00 s1Fon s1008 s1ha
Tradar Tracker RPe e RPC endoap csc Traar
FED TEC: FED TEC Trgger Lhe v fep Ponersupply
GHALL GHALL RANIER WSMITH RANIER] TvunG oHaLL
1810 s1810 sici0 s1010 s1E10 s1F10 51610 110
cse Trasker Trasker RPe RPC endoap. o1 Traar
FED TEC: FED TEC Trigger v Hy Pomersupply
TvLnG HALL GHALL RANIER WSMITH RANER] wiLLMOT oHALL
s1a11 1811 s1c11 s1011 s1E1 s1F1t s1011 St
cse oan Trakar RPC bans! RPC endoap- o1 Traar
" oan Controlz " v Hy Ponersupply
TvLnG Racz GHALL WSMITH RANIER] RANIER] wiLLMOT oHaLL
s1a12 s1812 sic12 s1D12 S1E12 stF12 51612 sH12
cse Preshowar Trackar WE11 RPC bansl RPC bansl o1 Traar
i reD Controls i " " v Ponersupply
TvLnG BARNEYD GHALL WSMITH RANIER] RANIER wiLLMOT oHALL
51813 s1813 s1c13 51013 s1E13 s1F1a 51013 113
csc Freshomar Tracker WE11 RFC banel RFC banel o1 Tradker
v reD Controlz H v v Hy Ponersupply
TYLING BARNEYD GHALL WSMITH RANIER RAMIER WiLLMOT GHALL
s1a14 51814 s1c14 51014 S1E14 S1F14 s1614 S1H14
cse oss Trackar oss RPC bansl oss o1 oss
v 0ss Gontrols 0ss v 0ss v bss
TYLnG cscharer GHALL ccharer RANIER] ccharer wiLLMOT cacharer
passageway —passaganay. passageway —passaganay. passageway —passaganay. pasageway- -~pasagamay-

Figure 2: Visualization of a detector end cap

Figure 3: Visualization of an experiment zone

Different label formats can be defined per item class.
From the main container it’s then possible to choose a list
of instances of a certain item class and labels of the items in
the list will be printed in a format to be selected by the user.
A bar code reader facility will allow visualizing the
component described in the label encoded in the bar code.

D. Item specific components

To illustrate the current implementation and its features,
two items of the electronics hierarchy and their specific
item visualizations shall be discussed. The electronics
hierarchy looks as follows:

Zone
- Rack
- Crate
- Board
- Channel
- Cable

1) Zone

As shown in Figure 3, the visualization of an experiment
zone consists of a synoptic representation of the rack
positions in the zone. The rack representations contain
information about the identifier of the rack, the detector it
belongs to, its usage and the responsible person. The rack
color depends on the dissipated power of the rack. This
allows for easy detection of hot spots. A whole rack
configuration can be copied to another rack by using drag
and drop.

2) Rack

The rack visualization consists of a synoptic view of a
rack with its crates. The crate color depends on its heat

dissipation. The template container on the right side of
Figure 1 can contain generic templates as well as sub system
specific ones. To insert a crate into the rack it is sufficient
to drag and drop a template into an empty slot in the rack.
Most of the rack parameters are shown as well as the crate
parameters. The user is asked to comment each change he
applies and the list of all comments concerning the
displayed rack is shown.

Before saving the rack, certain configuration rules are
checked. In case any rule is violated, the rack Wizard
shows an error message, explaining the violated rule and
doesn’t allow saving the configuration. However, the
synoptic representation and the visual configuration help to
prevent already certain errors like empty slots in between
crates, which would disturb the airflow.

CONCLUSIONS

The rack Wizard is currently used in CMS to insert the
electronics racks configuration into the equipment
management database. It has been proven to be a useful
tool and is used by the electronics and cooling services as
primary source on statistical information about power usage
and dissipation of the racks. Soon it will also be used to
follow the installation process of detector items. The bar
code scanning facility will make it a complete solution for
asset tracking. The possible use of the Rack Wizard in
ATLAS and LHCb is under investigation.

REFERENCES
[1] http://www.w3.org/ XML/
[2] http://www.w3.org/Protocols/
[3] http://www.oracle.com/

