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Abstract

The Atlas RobIn Prototype is an FPGA and Proces-
sor based PCI device, which receives event data fragments
on two HOLA SLink ports, buffers and delivers or deletes
them on request. Thus it is one of the core devices of the
Atlas Readout System (ROS). To study various PCI-Bus
and Ethernet based ROS implementations the board offers
two interface flavours for data requests: PCI and Gigabit
Ethernet.

This paper presents a study of a ROS System based
on an ordinary PC, hosting up to 3 RobIn Prototypes us-
ing the PCI-Bus for data exchange. The multithreaded
host software uses an asynchronous messaging scheme op-
timizing the communication with the RobIns. First mea-
surements indicate that a PCI-Bus based ROS can satisfy
Atlas Data-Flow needs.

I. Introduction

The Atlas Readout Sub System (ROS) provides data ac-
cess to events, which have been accepted by the first selec-
tion stage of the Atlas DAQ system (Level 1 trigger), to
computing farms for further analysis. Event data arrives
with a frequency of up to 75 kHz 1 on 1600 Readout Links
(ROL) form the Atlas Readout Drivers (ROD). The ROS
buffers this data in real-time; a volume of up to 160 MB/s
per ROL link.

These requirements put high demand on the input of the
ROS system. Data has to be taken on the input port for
long periods without interruption. The data source, the
Readout Driver (ROD), has insufficient capacity to buffer
event data if the ROS is unable to take it.

On the ROS output side, buffered data is requested for
further analysis by the Atlas Level 2 Farm. The latter
rejects irrelevant events, and thus reduces the event rate
down to a few kHz. To keep the analysis effort low, Re-
gions of Interest (RoI) are defined for each event. This
mechanism reduces the amount of data, requested for Level
2 analysis per ROL, to only about 1% [1] [2] of the input

1It is planned to later upgrade to 100kHz

data. If the Level 2 Farm accepts the event, the ROS is re-
quested to send the complete event data to the Event Filter
Farm, which is the last data selection stage. This happens
for about 3% [1] [2] of all incoming events. All other events
get deleted inside the ROS buffer. The communication be-
tween ROS, Level 2 and Event Filter (requests, decisions
and event data) runs over a Gigabit Ethernet Switching
Network.

The high demands on the ROS input, and the use of a
special link (SLink), necessitate a custom electronics device
inside the ROS. This Readout Buffer Input (RobIn) is one
of the main components of the Readout Sub System. Its
task is to receive and buffer event data arriving via SLink
from the RODs. Since the data request rate is much less
than the input rate, several ROLs can be handled on one
RobIn device. This concentration also has the advantage of
economy. The Atlas Base Line architecture[1] [2] specifies
four ROLs per RobIn board.

This paper presents a prototype RobIn to study two dif-
ferent ROS implementations based on PCI-Bus and Giga-
bit Ethernet. Furthermore the main focus is put on study-
ing a complete PCI-Bus based ROS System including test
results. This provides the first performance estimations of
a PCI-Bus based ROS following the Atlas Baseline archi-
tecture.

II. ROS Hardware

A. The RobIn Prototype

The RobIn is the key component of the Atlas Readout
System. It receives and buffers detector event data frag-
ments with a size of up to 1.6 kB arriving with a frequency
of up to 75 kHz.

Figure 1 shows the RobIn Prototype. It is a custom PC
format PCI card, based on an FPGA and a microcontroller.
Two2 optical HOLA3 SLink input ports connect the device
to two ROD Readout Links. SLink protocol engine and in-
put buffer management are implemented inside the Xilinx

2This is different to the Atlas Baseline proposal, and a result of the
limited space on board

3HOLA: High Speed Optical Link for Atlas
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Figure 1: The RobIn Prototype. The main modules have been high-
lighted.

Virtex II FPGA (XC2C1500). The FPGA bursts incom-
ing data directly into a pre-selected buffer page. The free
page is provided by the IBM PowerPC 405CR microcon-
troller through a Free-Page-FIFO. The microcontroller has
to avoid this FIFO becoming empty, so as not to stall the
input stream.

128 MB SDRAM is available to buffer event data, 64MB
per ROL input. For buffer management purposes a small
2 MB SRAM is intended to take a used page hash table.
This is used for localizing event fragments on data or clear
requests.

The main buffer management is executed in the Pow-
erPC processor. It provides empty pages to the SLink in-
put engine inside the FPGA, stores the used pages against
the event ID, and locates requested data.

Data requests or clear requests can be sent to the RobIn
prototype via PCI-Bus or the Gigabit Ethernet Interface.
In both cases the FPGA buffers the incoming messages and
provides the PowerPC access to them. Message interpre-
tation, execution and response preparation (if any) is done
by the microcontroller. Response messages are sent by a
DMA engine inside the FPGA using the selected interface
(Ethernet or PCI). Event data fragments are gathered by
this engine and added to the return message.

Finally a PLX9696 PCI bridge connects the prototype
RobIn to the 64 bit, 66 MHz PCI-Bus. This device gates
all RobIn accesses and provides Master DMA capabilities.
The FPGA is able to access the PLX9656 through a 32 bit,
66 MHz local Bus. Alternatively an optical or electrical
Gigabit Ethernet port is available.

A more detailed description of the prototype RobIn can
be found in [3] and [4].

B. The ROS-PC

Several RobIn Prototype boards are hosted in an ”off-
the-shelf” PC. If the PCI-Bus is used for RobIn commu-
nication, a PC System with several bus segments provides
best PCI bandwidth. Currently three Intel XEON systems
are available for testing. Their processors frequencies vary
between 2 GHz and 3GHz. Each of these PCs has four
PCI- buses and six available PCI slots. Figure 2 shows

a ROS-PC setup as it is proposed in the Atlas Baseline
architecture.
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Figure 2: Schematic drawing of the PCI-Bus configuration within the
ROS-PC. Three slots are used by RobIns and at least one Gigabit
Ethernet card uses another slot. Open slots may carry additional
RobIns. At least one Fast Ethernet adapter is located on the PC
mainboard.

Three of the four available PCI segments are occupied
by three RobIn Prototype boards. The remaining segment
holds at least one Gigabit Ethernet card. Two more Eth-
ernet adapters are located directly on the PC mainboard.
Having four ROLs handled by one RobIn, the complete
ROS-PC is able to receive data from 12 Readout Links.
In this setup, the full PCI bandwidth is available to each
component, the three RobIns and the Ethernet adapters.
Using all available slots allows adding up to six RobIns and
24 ROLs into a single PC.

III. ROS Software

To mediate between requests of the Level 2 and Event
Filter Farm, and the RobIns, the ROS-PC runs a mul-
tithreaded software written in C++ on top of the Linux
Operating System. It:
• initializes and controls the RobIn boards,
• listens for data and clear requests on Ethernet,
• forwards data and clear requests to the RobIn boards,
• gathers the event data fragments from the RobIns, for-

mats them and sends them to the requestor.
Figure 3 shows a functional diagram of the ROS-PC soft-

ware. Incoming messages are received by the input handler
(Trigger), which runs in a separate thread. It puts all in-
coming messages into a thread-safe request queue for fur-
ther processing. A configurable number of Request Han-
dlers are responsible for execution of the request messages.
Each Handler runs in a separate thread. To process the
messages inside the request queue, a free Request handler
thread is selected. It reads the request message out of the
queue and accesses the RobIn hardware using the abstract
Fragment Manager interface. Each ROL on each RobIn
has one dedicated Fragment Manager instance in the ROS-
PC application. In case of a data request, returning event
fragments are collected and sent by the Gigabit Ethernet
interface to Level 2 or the Event Filter.

The detailed communication between the ROS software
and the RobIn is completely abstracted by the Fragment-
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Figure 3: Multithreaded organization of the ROS PCs software. In-
coming requests are queued by a Trigger thread. Several request
handlers execute the requests by accessing the RobIns through the
Fragment Manager interface.

Manager object. The mechanism has been optimized to
speed up data requests. It is derived from earlier proto-
types [5].
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Figure 4: The Fragment Managers communication with the RobIn.
Clear requests pass the RobIns FPGA and are executed by the Pow-
erPC with no response. Requests are handled and answered by the
PowerPC using the FPGA DMA engine.

Figure 4 shows the request and data flow between the
ROS- PC (the Fragment Manager) and a RobIn PCI board.
RobIn Requests are sent by single PCI writes (for small
messages, e.g. event data requests), or by a Bus Master
DMA (for large messages, e.g. clear requests), to a FIFO
inside the FPGA of the RobIn. All RobIn PCI addresses
are memory-mapped 4 into the address space of the Host-
PC.

The available request messages to the RobIn and their
format is described in [6]. An event data request message

4Memory-mapping allows to directly write to an address of the
Host-PC which leads to single cycle reads or writes on the PCI-Bus

consists of three 32bit words plus the event ID. A clear
message consists of four 32bit words plus a large number
of event IDs (usually 100).

The PowerPC processor of the RobIn polls on the
FPGA’s input FIFO and reads the message. In case of
a clear message, it executes it by removing the matching
events from the buffer. In case of a data request, it forms a
response which instructs the FPGA’s DMA engine to send
event data from the RobIn buffer directly, via the PCI-bus,
to the Host’s DMA buffer.

When writing event data, the RobIn is able to randomly
access the DMA Buffer inside the Host-PC. This allows
to write event data to a pre-defined position and prevents
unnecessary memcopies of the ROS Software.

To signal the end of an event data transfer, the RobIn de-
lays the first 32bit word of the event fragment data. On the
Host PC, the Fragment Manager instance clears the first
word of the destination DMA buffer prior to the request
to zero. When the RobIn finalizes the data transmission it
sends the first word of the event data fragment. This is de-
tected by the Fragment Manager software by polling on the
first word of the destination DMA memory. Since polling
blocks the CPU, the thread forces the Operating System
to re-schedule all threads. Other threads may now use the
CPU, while the polling thread waits for data arrival. This
prevents a high loss of performance due to extensive polling
of the Request Handler threads.

IV. Measurements and Discussion

Several tests have been performed, to characterize the
ROS Software and the PCI-Bus utilization. Since the
RobIn prototype was not available from the beginning, a
similar PCI board, the MPRACE[7], has been used to em-
ulate PCI-Bus messaging. MPRACE is composed of the
same key components: a Xilinx Virtex II FPGA and the
PLX9656 PCI bridge. Only the PowerPC processor is ab-
sent. Its tasks are executed within the FPGA. Event frag-
ment data is pre-loaded into the MPRACE RobIn emula-
tor; no SLink has been used during the tests.

All Measurements have been done using one of the three
PCs mentioned in section II-B, equipped with up to three
MPRACE RobIn emulators. To estimate results with four
ROLs per RobIn, the ROS Software is able to instanti-
ate four Fragment Managers per MPRACE. Measurements
with I/O to Gigabit Ethernet have been done using a sec-
ond Xeon System, running a request emulator.

A. PCI Data Request and Clear Performance

Diagram 5 shows the data request performance depend-
ing on the number of active ROS software Request Handler
threads. A huge number of data requests are generated
internally, and distributed to the available threads. The
requests are passed to a single MPRACE RobIn board.
Returning data is sent to an output emulator, which does
no further operation. Finally the number of successful re-
quests per time (the request rate) is reported.

In case of only one Request Handler, data fragments are
processed sequentially by the ROS PC software and the
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Figure 5: RobIn data request rate depending on the number of Re-
quest Handler threads measured with the one MPRACE board.

RobIn. This implies waiting periods, which can’t be used
for other activities. The result is a very low rate request
rate.

Increasing the number of threads increases the request
rate too, because other threads may process events while
one thread is waiting for the RobIn. A maximum is reached
when having 14 threads. Having more increases the over-
head for task switching, which lowers the request rate
again.

Fragment Size Dependency

2.4 GHz PC, no Net I/O, 1 RobIn


0


50


100


150


200


250


0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800


Fragment Size [bytes]


R
eq

ue
st

 R
at

e 
[k

H
z]




MPRACE


RobIn Prototype


Figure 6: The dependency of the data request rate depending on the
Event Fragment size measured with the MPRACE RobIn emulator
and the real RobIn Prototype hardware. The number of Request
Handler threads was set to 8

When varying the fragment size, the request rate de-
creases for event fragments larger then 512 bytes. For
smaller fragments the request rate stays constant. This
is shown in diagram 6. In case of small fragments, fixed
overheads (memory allocation, RobIn request message de-
coding, ...) overlap the very short PCI-Bus data transmis-
sion time. Thus, up to 512 bytes only these fixed overheads
determine the RobIn request rate. In case of large frag-
ments the PCI-Bus data transmission time plays a more
important role and limits the request rate. A decrease of
the request rate with increasing fragment sizes can be ob-
served.

Diagram 6 includes the measured request rate of the

RobIn prototype board, which can be compared with the
MPRACE results. It has been observed that the results
with the RobIn prototype are in the same order of mag-
nitude. This approves the MPRACE emulating the RobIn
prototype for the first time.

To finalize the examination of the basic RobIn accesses,
the execution time of clear requests has been measured.
This is plotted in diagram 7 depending on the number of
Event IDs carried by the clear message towards the RobIn.
For up to 100 IDs, the measured time increases linear up to
13 µs. A linear fit produces a fix offset of 6.8µs. This offset
is the sum of the time to prepare the clear message, set up
the Bus-Master DMA on the PLX PCI-Bridge and to de-
code the message on the MPRACE. Without this overhead,
the time to delete is 0.06 µ per Event ID.

Performance of clear messages
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Figure 7: The time to send a clear message to the RobIn and execute
it. Varied is the number of Event IDs carried by the clear message.

B. Effect of Network I/O

Adding real I/O to Level 2 and the EF switching network
reduces the overall ROS performance due to the additional
CPU load for handling the output to Gigabit Ethernet.
This has been measured and is drawn in diagram 8. It
shows the maximum sustainable Level 1 input rate to the
RobIns depending on the Level 2 accept rate, while 2% of
the incoming event fragments are requested by the Level 2
trigger (per RobIn). The maximum Level 1 rate has been
back-calculated from the RobIn’s request rate.

The test setup for the measurement in diagram 8 con-
sists of two PCs. One ROS-PC with 3 MPRACE RobIn
emulators and another PC, emulating requests from the
Level 2 and the Event Filter farms. Each MPRACE RobIn
emulator represents a RobIn with four input links from
the Readout Drivers. Thus the ROS-PC handles 12 ROLs,
which matches the Atlas baseline architecture.

Diagram 8 shows that including I/O traffic on the Gi-
gabit Ethernet output, reduces the performance of the full
scale ROS-PC by a factor of 3. But only for high Level 2
accept rates (large traffic to the Event Filter), a significant
traffic is generated on Gigabit Ethernet; about 70 MB/s
with 8% Level 2 accept fraction.

For small Level 2 accept fractions the limiting factor can
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Figure 8: Maximum sustainable Level 1 rate of a ROS System han-
dling 12 ROLS on 3 MPRACE RobIn boards, 4 ROLs per RobIn. The
measurements have been done with and without I/O to the LVL2 and
EF switching network on a 2GHz PC

be identified to be the ROS-PCs CPU power. This is shown
in more detail in the next sub-section.

C. Scaling with the Host CPU frequency

CPU scalability 
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Figure 9: Maximum sustainable Level 1 rate of a ROS System han-
dling 12 ROLS on 3 MPRACE RobIn boards. Measurement has been
done with I/O to the LVL2 and EF switching network on a 2 GHz
and 3 GHzPC

Diagram 9 shows the performance of a full scale ROS-PC,
tested on two different PCs, with 2 GHz and a 3 GHz pro-
cessors. Tests are again done with the 3 MPRACE boards
emulating input form 4 Readout links.

Switching to the faster CPU increases the overall perfor-
mance by 25% for small Level 2 accept rates and by 16%
for large accept rates. This gives a clear indication that the
ROS-PC is limited by its computing power for low Level
2 accept rates. For high Level 2 accept rates the improve-
ment is less, which indicates that ROS System performance
starts to depend on the Gigabit Ethernet line speed too.
Having a Level 2 accept rate already generates a traffic of
about 80MB/s and the theoretical limit for Gigabit Eth-
ernet is 125MB/s.

Finally this measurement approves that a ROS System,
based even on the slow PC, is able to fulfil the required
Atlas Level 1 input rate of 75 kHz (with 1% Level 2 ROI
request fraction and 3% accept fraction).

V. Conclusions

The presented PCI-Bus based ROS enables to concen-
trate at least 12 Readout Links to one Network output to
the Level 2 and Event Filter Switching networks. First
measurements of a complete system, comprising PCI-Bus
messaging performance and I/O to Gigabit Ethernet, show
that the Atlas requirements can be fulfilled. The measure-
ments have been done with hardware emulating the RobIn
PCI messaging. Thus the results have to be approved with
the real RobIn prototype hardware. First tests have al-
ready been done and show that the RobIn’s performance
is in the same order of magnitude.

Detailed measurements have shown that the performance
of the PCI-Bus based ROS is currently limited mostly by
the speed of the Host-PC CPU. Significant traffic on Gi-
gabit Ethernet is generated only in case of large Level 2
accept rates, but this is still not close to Gigabit Ethernet
line speed.

Further tests with the prototype RobIn may also include
real input via the HOLA SLink ports. This proves the pre-
sented Level 1 input rates, witch have been back-calculated
from the measured PCI-Bus request rate.
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