Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector

Michael M. Zoeller The Ohio State University

September 11, 2002

K.E. Arms, K.K. Gan, M. Johnson, H. Kagan, R. Kass, C. Rush, S. Smith, R. Ter-Antonian, M.M. Zoeller <u>The Ohio State University</u>

J. Hausmann, M. Holder, M. Kraemer, A. Niculae, M. Ziolkowski <u>Universitaet Siegen, Germany</u>

Outline

- Introduction
- Results from IBM 0.25µm Submissions
- IBM 0.25µm Irradiation Results
- ASIC Testing Station
- Summary & Outlook

ATLAS Pixel Detector

- Inner most tracking detector
- ~ 100 million channels
- 3 layers with radii 12.25 cm, 9.85 cm and 5.05 cm in the barrel
- Radiation doses at radius of the middle layer in 10 years of LHC operation:
- ~ 10^{15} 1-MeV n_{eq} /cm²; Total dose: 50 Mrad, Opto: ~ 30 Mrad

ATLAS Pixel Electronics Readout Path

- VCSEL: Vertical Cavity Surface Emitting Laser diode ✓
- **VDC: VCSEL Driver Circuit**
- PIN: PiN diode ✓
- **DORIC: Digital Optical Receiver Integrated Circuit**

Michael M. Zoeller

Radiation Hardness of PINs and VCSELs

- **PIN:** Responsivity drops to $\sim 2/3$ after irradiation to lifetime dose (0.5 \rightarrow 0.3 mA/mW)
 - Lifetime test shows no failures
 - Rise & fall times unchanged for $V_{bias} > 5V$
- VCSEL: After 4x10¹⁵ n/cm², annealing at 20mA restores 100% of original light output
 - Anneal VCSELs during irradiation study of optical links!

VCSEL Driver Circuit Specs

- Convert LVDS input signal into single-ended signal appropriate to drive VCSEL diode
- Output current: 0 to 20mA, controlled by external voltage
- Standing current: ~1mA to improve switching speed
- Rise & fall times: 1ns nominal (80MHz signals)
- Duty cycle: 50% +/- 4%
- "On" voltage of VCSEL: up to 2.3V at 20mA
- Constant current consumption!

Digital Optical Receiver IC Specs

- Decode Bi-Phase Mark encoded (BPM) clock and command signals from PIN diode
- Input signal step size: 40µA to 600µA
- Extract 40MHz clock
- Duty cycle: 50% +/- 4%
- Total timing error: < 1ns
- Bit Error Rate (BER):
 < 10⁻¹¹ at end of life

DORIC Logic

Michael M. Zoeller

VDC & DORIC Design History

 Original design by ATLAS SemiConductor Tracker (SCT) team: AMS 0.8µm BiPolar in radiation tolerant process, 4V

 DMILL #1-3: Summer 1999 - May 2001 0.8µm CMOS, rad-hard, 3.2V
 VDC & DORIC: #3 meet original electrical specs
 April 2001 Irradiation: severe degradation of circuit performance! Not radiation hard enough for ATLAS pixel optical link

➡ Migrate to IBM 0.25µm: Summer 2001, 2.5V Enclosed layout transistors and guard rings for improved radiation hardness

VDC & DORIC Designs in 0.25µm

• IBM #1-2: June - October 2001

- VDC: decouple adjustment of bright & dim currents more constant current consumption
- DORIC: optimized <u>differential</u> preamp circuit ⇒ both circuits meet original specs

• **IBM #3: November 2001**

- **VDC:** further improvements to current consumption, 4-ch IC
- DORIC: <u>single ended</u> preamp keeps PIN bias off chip improved delay control circuit, ...

⇒ single ended preamp matches prior performance

• IBM #4: April 2002

- VDC: compatible with common cathode VCSEL arrays, 4-ch IC → Results ⇒ need to improve switching speed of pFETs → Hrrad.
- DORIC: preamp optimized for common anode PIN arrays improved delay control circuit: centers clock at 50% duty cycle reset added for slow and controlled recovery, ..., 4-ch IC _____ Results
 - ⇒ improved performance over #3
 - ⇒ need to be compatible with <u>common cathode</u> PIN arrays!

+ Irrad

Results

VDC-I4 Results: VCSEL Current vs. I_{set}

10 Ω in series with VCSEL ⇒ early saturation at high I_{set}
 Need to increase I_{bright} (VDC-I3 reached 20mA), I_{dim} (~1mA)

VDC-I4 Results: Duty Cycle

- Balanced current consumption
- Rise & Fall times: 1.0...1.4ns over operating range
 improve speed of pFETs (common cathode design)

Michael M. Zoeller

DORIC-I3: Bit Error Rate vs. I_{PIN}

PIN current thresholds for no bit errors: 20...25µA
DORIC-I4: improved performance (< 20µA)

Michael M. Zoeller

DORIC-I3: Duty Cycle of Decoded Clock

• 9 out of 11 DORIC-I3 within spec: 46...54%

- DORIC-I4: duty cycle centered at 50%
 - slow reset works
 - various improvements are successful

Irradiation of VDC-I4 & DORIC-I4, Aug. 2002

- 24 GeV proton test beam at CERN (T7)
- Cold box: electrical testing of single channel VDC & DORIC
- Shuttle system: testing of optical links on opto-board, 4-channel VDC & DORIC

PRELIMINARY RESULTS ⇒

Michael M. Zoeller

DORIC-I4: Bit Error Threshold vs. Dosage

PIN current thresholds for no bit errors:

- $\sim 12 \mu A$ for all 10 tested DORIC-I4 circuits
- constant up to 45Mrad for all tested chips

VDC-I4: VCSEL Current vs. Dosage

Bright & dim currents constant up to 45 Mrad

Michael M. Zoeller

VDC-I4: Duty Cycle vs. Dosage

• Duty cycle of VDC-I4 increases by ~ 2% after 45 Mrad

Michael M. Zoeller

Test Boards for Irradiation in Shuttle

Opto-board with 7 opto-links

25 m fibers/wires

Decoded data

Bit error test boards in control room (one per opto-link)

Opto-Board for Irradiation Study

PIN Array 4-channel DORIC-14

VCSEL Array 4-channel VDC-I4

• Two 4-ch DORICs, four 4-ch VDCs on fully populated board

Michael M. Zoeller

Opto-Board Bit Error Threshold vs. Dosage

Dosage / VCSEL Annealing Time

- VCSELs annealed with 20mA during indicated periods
- Bit error threshold remains ~ constant up to 30Mrad

Michael M. Zoeller

Opto-Board Optical Power vs. Dosage

Optical power decreases by < 50% after 30Mrad
 Complete optical link is adequately radiation hard

Michael M. Zoeller

ASIC Testing

• DMILL #1 - IBM #2:

• OSU-designed stand-alone BER & irradiation test boards used

• Testing done manually with oscilloscope, multi-meters, etc.

• IBM #3 and beyond:

• Automation using NI LabView implemented

• Stand-alone test-boards redesigned for use with computer interface

- Probe-card with Lab View interface implemented for testing bare dice
 continual monitoring of tests for long periods (ie: irradiation)
 - ⇒ continual monitoring of tests for long periods (ie: irradiation)

⇒ large statistical samples of measurements possible

⇒ makes mass testing of ASICs feasible (1000's of dice to test!)

Michael M. Zoeller

Summary & Outlook

- VDC-I4 & DORIC-I4 (IBM 0.25µm) meet specs
- Radiation hardness of VDC-I4 & DORIC-I4 (IBM 0.25µm) appears adequate for pixel system:

Circuits continue to perform well after 30-45Mrad!

- Automated testing station has been implemented
- Next submission: Nov./Dec. 2002
 - Improve speed & ampl. of common cathode VDC
 - Implement common cathode preamp in DORIC, tune preamp: dynamic range, S/N, etc.