
SynUTC – High Precision Time Synchronization over Ethernet Networks 

Roland Höller 

Institute of Computer Technology 
Vienna University of Technology 

Viktor-Kaplan Str. 2, 2700 Wiener Neustadt, Austria 
tel +43-2622-23420 fax +43-2622-83423 

e-mail: roland.hoeller@tuwien.ac.at  

Martin Horauer 

Technikum Vienna 
Höchstädtplatz 3, 1200 Vienna, Austria 

tel +43 1 3334077 291  
e-mail: Martin.Horauer@technikum-wien.at 

  

Ulrich Schmid 

Department of Automation  
Vienna University of Technology 

Treitlstraße 1, 1040 Vienna, Austria 
tel +43-1-58801-18325 fax +43-1-58801-18391 

e-mail: s@auto.tuwien.ac.at  

Günther Gridling 

Department of Automation 
Vienna University of Technolgy 

Treitlstraße 1, 1040 Vienna, Austria 
tel +43-1-58801-18325 

e-mail: gg@auto.tuwien.ac.at   

Nikolaus Kerö 

Oregano Systems  
Design & Consulting GesmbH 

Phorusgasse 8, 1040 Vienna, Austria 
tel +43-676-843104-300 

e-mail: keroe@oregano.at  

Klaus Schossmaier 

Department of Automation  
Vienna University of Technology 

Treitlstraße 1, 1040 Vienna, Austria  
e-mail: Klaus.Schossmaier@cern.ch 

Abstract 
This article describes our SynUTC* (Synchronized 

Universal Time Coordinated) technology, which enables high-
accuracy distribution of GPS time and time synchronization 
of network nodes connected via standard Ethernet LANs. By 
means of exchanging data packets in conjunction with 
moderate hardware support at nodes and switches, an overall 
worst-case accuracy in the range of some 100 ns can be 
achieved, with negligible communication overhead. Our tech-
nology thus improves the 1 ms -range accuracy achievable by 
conventional, software-based approaches like NTP by 4 
orders of magnitude. Applications can use the high-accuracy 
global time provided by SynUTC for event timestamping and 
event generation both at hardware and software level. 

SynUTC is based upon inserting highly accurate time 
information into dedicated data packets at the media-
independent interface (MII) between the physical layer 

                                                                 
* The SynUTC-project (http://www.auto.tuwien.ac.at/ 
Projects/SynUTC/) received support from the Austrian 
Science Foundation (FWF) grant P10244-ÖMA, the OeNB 
"Jubiläumsfonds-Projekt" 6454, the BMfWV research 
contract Zl.601.577/2-IV/B/9/96, and the Austrian START 
programme Y41-MAT. The present work was also supported 
by the Austrian "Gesellschaft für Mikroelektronik" (GMe). 

transceiver and the network controller upon packet 
transmission and reception, respectively. As a consequence, 
every node has access to the local time information of any 
communication peer and can therefore re-adjust its  local clock 
accordingly. This enables both simple solutions based upon 
synchronizing with a (GPS-equipped) master node as well as 
elaborate fault-tolerant clock synchronization algorithms.  

Each node must be equipped with a special network 
interface card (NIC) for this purpose, which extends standard 
NIC chipsets by a custom hardware encapsulated in a single 
IC plugged into the MII. This chip contains primarily a high-
precision adjustable adder-based clock and timestamping 
registers as well as an uC core executing the synchronization 
algorithm. Our technology is generic, in the sense that our 
hardware support can be used with any NIC chipset based 
upon the MII. Moreover, since clock synchronization, except 
a simple service that broadcasts messages on a regular basis, 
is performed by the on-chip uC, standard NIC device drivers 
and protocol stacks can be used without changing. Last but 
not least, the principle underlying SynUTC is not limited to 
Ethernet-based networks but is applicable for any packet-
oriented data network as well. 

To verify the feasibility of our approach, a research 
prototype has already been developed and evaluated 
successfully. Currently, a multi-node demonstration system is 
being built to facilitate the transfer of our SynUTC technology 
in commercial applications. 



I. INTRODUCTION 
Networked distributed systems benefit from a reliable, 

high-accuracy distributed time service in various ways. Apart 
from enabling high-precision simultaneous triggering of 
events and synchronous data acquisition at different nodes, 
tight clock synchronization is also advantageous for emerging 
networks destined to handle voice, data and Internet Protocol 
(IP) traffic: Maintaining an acceptable end-to-end quality of 
service in such networks requires continuous monitoring and 
maintenance of quite small latencies, which are caused by 
protocol processing, system transfer rates, frame forwarding 
mechanisms, etc. Clock synchronization accuracies in the ms -
range, as provided e.g. by the well-known NTP time service, 
are not sufficient for this purpose.  

Synchronizing an ensemble of distributed clocks comes in 
two flavours: 

• Internal clock synchronization aims to keep the 
deviation between all clocks bounded, i.e., if Ci(t) 
and Cj(t) denote two fault-free clocks within a 
system, the worst case precision p satisfies  
|Ci(t) – Cj(t)| = p ∀t = t0. 

• External clock synchronization relates to the 
problem that clocks are required to follow an 
external reference like GPS time. The maximum 
deviation towards this reference time is called 
accuracy a, formally |Ci(t) – t| = a ∀t = t0. 

Reaching both goals jointly turns out to be a non-trivial 
problem, since a certain trade-off seems to be involved [5]. 

Pure software-based clock synchronization approaches do 
not take the medium access uncertainty at the sending node, 
any variable network delay, and the reception interrupt 
latency into account [8], [9]. The first one can be quite large 
for any network utilizing a shared medium, and the last one is 
seriously impaired by code segments with interrupts disabled. 
Typical values for the clock reading error reside in the range 
of several 100 µs to 1 ms. 

With moderate hardware support developed along with 
our SynUTC project, we obtained results in the 1 µs range for 
both precision and accuracy [3]. With the integration of 
highly accurate timestamping features in the MII interface of 
Ethernet network interface cards (NIC) precision and 
accuracy can be further improved [4],[1],[2]. 

This paper surveys the current status of our technology. In 
Section II, the key features of our approach are described. 
Section III gives an overview of an entire system including an 
Ethernet switch. Section IV and V is devoted to the hardware 
support required at nodes and switches, respectively. A brief 
introduction to clock synchronization software issues is 
contained in Section VI. Some conclusions and directions of 
future work round off the paper. 

II. KEY OPERATING PRINCIPLES 
Our approach does not use dedicated GPS-receivers per 

node, but disseminates time information via standard data 
packets. It thus avoids both fault-tolerance limitations and 

practical problems inherent in any “dedicated receiver”-
solution: 

• GPS-receivers do deliver wrong 1pps pulses now 
and then, and the large time -to-fix may cause a 
joining delay of 30 seconds or more for newly 
powered up nodes  [7].  

• Moreover, the “forest” of antennas required for a, 
say, distributed factory automation system with 
100 nodes is difficult to accommodate and 
connect.  

Our approach simultaneously increases the fault-tolerance 
degree and decreases the number of GPS receivers required in 
the system - without additional (cabling) costs, by using the 
existing data network only. The only price to be paid is some 
moderate hardware support and decreased precision/accuracy, 
which is hopefully acceptable for most applications. 

Our SynUTC technology for high-accuracy clock 
synchronization is  based upon a few key paradigms, which 
will be briefly introduced subsequently. 

A. Adder-Based Clock 
Local time at any computing node is maintained by means 

of an unconventional adder-based clock [10], which uses a 
high-resolution adder instead of a simple counter for summing 
up the elapsed time between succeeding oscillator ticks. 
Owing to this, the clock can be paced by an oscillator with 
arbitrary frequency. Moreover, the local clock is fine-grained 
rate adjustable in steps of nsec/sec and supports state adjust-
ment via continuous amortization as well as leap second 
corrections in hardware. 

B. On-the-fly packet timestamping 
Clock synchronization over packet-oriented networks 

requires timestamping of data packets (Clock Synchronization 
Packets, CSPs) used for time transfer (see Figure 1). In purely 
software-based clock synchronization, timestamping at the 
sending resp. receiving side is done by reading the clock when 
assembling the CSP for transmission resp. in the packet 
reception interrupt service routine. This implies that the 
transmission delay uncertainty e includes both the network 
channel access uncertainty and the reception interrupt latency, 
which can be quite large. As a consequence, the achievable 
synchronization precision is quite poor (ms -range). 

Delta TS

Preamble
1010...1010

SFD
10101011

Destination
Address

Source
Address

Length/Type
Field

Status Bits and other data FCS

Receive
TS

UTCSU
Timestamp

New FCS

Send
TS

Hop
Counter

Packet
ID

PAD

 
Figure 1: The structure of a clock synchronization packet (CSP). The 
packet ID allows management of additional features. The receive, 
delta, and send timestamps account for 96 Bits each. The 8 Bit hop -
counter counts the number of switches along a CSP’s path. 



Our approach [3],[4] performs timestamping on-the-fly, 
when a CSP is sent resp. received by the network controller.  
As the Ethernet frame is received nibble by nibble via the MII 
interface, our special hardware scans the incoming data for 
the start frame delimiter (SFD) of the packet. With the clock 
cycle it encounters the SFD, the adder-based clock is 
triggered to store its current value in a 96 Bit timestamp 
register. This data is inserted in the “Receive TS” field of the 
CSP during reception or in the “Send TS” field of a CSP 
during transmission. 

C. Interval-based Paradigm 
A unique feature of our approach is the support of the 

interval-based paradigm [6]. Real-time t, that is, GPS time or 
UTC, is not just represented by a single time -dependent clock 
value C(t) here, but rather by an accuracy interval C(t) that 
must satisfy t in C(t). Interval-based clock synchronization 
thus assumes that each node p is equipped with a local 
interval clock Cp that continuously displays p's instantaneous 
accuracy interval Cp(t) = [Cp(t) - ap

-(t), Cp(t) + ap
+(t)] (see 

Figure 2). Naturally, Cp(t) is just the local clock value and 
ap(t)=[-ap

-(t), ap
+(t)] the negative and positive accuracy 

maintained by two additional adder-based clocks. 

 

Reference Time
(e.g. GPS)

Real Timet

Clock
Time

Local Time

 
Figure 2: Basic issues of interval clocks and accuracy intervals. 
Local time follows the reference time within the accuracy bounds. 

D. Clock State and Rate Synchronization 
An interval-based (external) clock synchronization 

algorithm is in charge of maintaining any node's local clock 
such that a worst case precision and accuracy is guaranteed 
[11]. Moreover, we synchronize not only the state of the 
clocks in the system, but also their progression: An additional 
interval based clock rate synchronization algorithm [12] is 
employed, which achieves high synchronization precision 
without expensive OCXOs as the nodes’ frequency sources 
and frequent resynchronizations. 

III. SYSTEM HARDWARE OVERVIEW  
The SynUTC prototype system consists of four network 
nodes, a COTS Ethernet switch, a time synchronisation add-
on to the switch, and a GPS-receiver (see Figure 3). The 
network nodes are personal computers (PC/104-Plus) and are 
additionally equipped with the specialized network interface 
card, providing essential hardware support for the 
synchronisation mechanism. These network interface cards 
(NIC) use the PCI bus to communicate with the node’s CPU. 

Ethernet
Switch

Switch
Add-On

System Node

NIC

System Node

NIC

System Node

NIC

System Node

NIC

GPS
Receiver

t
~ 100 ns range  

Figure 3: A SynUTC system for fault-tolerant external clock 
synchronization. The time synchronization system nodes are 
standard personal computers equipped with a special network 
interface card. All ports of the used COTS Ethernet switch are 
connected to the switch add-on, which timestamps bypassing clock 
synchronization packets. 

The system nodes synchronize time via sending Clock 
Synchronization Packets (CSP) over the Ethernet LAN. CSPs 
use a special type field in the Ethernet packet header to be 
distinguished from all other network traffic. All data 
processing and calculations for the synchronization algorithm 
is performed by a 32 Bit microcontroller IP core, located on 
the NIC. The node’s CPU does not see any difference 
between this NIC, which supports clock synchronization, and 
any other COTS Ethernet network card using the same 
Ethernet controller chip. Hence the whole node’s system is 
unchanged except the fact that the node CPU has to broadcast 
CSPs on a regular basis (e.g. every ten seconds).  

IV.  NETWORK INTERFACE HARDWARE 
ARCHITECTURE 

Implementing a clock synchronization service according 
to the ideas outlined in the previous sections requires 
moderate hardware support on every node, which can be 
provided in a single custom chip (UTCSU-ASIC). It hosts the 
following functionality: 

• A high-resolution adder-based local clock with a 
mechanism for linear continuous amortization. 

• Two additional adder-based clocks holding and 
automatically deteriorating the bounds on 
accuracy with respect to external reference time. 

a+(t) 

a-(t) 



• An interface to a GPS timing receiver, made up 
of a 1-pps digital input and a RS232 serial 
interface. 

• Application-level event generation and time-
stamping capabilities. 

• A standardized interface for packet timestamping 
near the physical layer (e.g. IEEE 802.3 MII). 

• A bus interface. 

• An on-chip 32-bit microcontroller running the 
synchronization algorithm. 

Figure 4 shows how the UTCSU-ASIC is integrated with 
the network controller on our NIC. Whenever a CSP is sent or 
received by the NIC, the UTCSU inserts a timestamp supplied 
by its adder-based clock. 

This is actually achieved by manipulating the data stream 
at the Media Independent Interface (MII) between the 
physical layer device (PHY) and the Ethernet controller. 
Obviously, the packet’s CRC and other error correction 
mechanisms are updated while the packet traverses the chip as 
well. The timestamps contained in a CSP are eventually used 
by the clock synchronization algorithm running on the on-
chip microcontroller, which computes and applies suitable 
clock adjustment values. 

Network Interface Card (NIC)

UTCSU
ASIC

(High Density
FPGA)

RJ45
Connector

Ethernet MAC
 +

PCI Controller

PCI Connector

10/100
Ethernet

PHY

InterruptOscillator
Boot

CPLD

Boot/Data/
Instruction

Flash

Trigger

NIOS
SRAM

 
Figure 4: The network interface card with the clock UTCSU ASIC 
(NICA) placed into the media independent interface. The ASIC is 
equipped with a 32 Bit microcontroller, which executes the clock 
synchronisation algorithm. Boot CPLD, Boot/Data/Instruction Flash, 
and SRAM are needed for configuring the high density FPGA and 
for the integrated µC. 

V. SWITCH ADD-ON HARDWARE ARCHITECTURE 
Recently, micro-segmentation by using switched Ethernet 

technology has become popular to handle all traffic in 
enterprise and industry networks. Supporting high-accuracy 
clock synchronization for these types of networks is hence 
mandatory. 

As packets are sent from a node’s NIC they will arrive at 
the prototype system’s Ethernet switch for being forwarded to 
their destination address. Ethernet switches exhibit a 
substantial delay of typically several 10 ms for a packet 

having to pass through the switch, and – even worse – this 
delay varies over time. To overcome these unfavourable 
properties with respect to high-accuracy clock synchro-
nization, a Switch Add-On is placed into the transmission 
path of the CSPs (see Figure 5). The Switch Add-On is 
equipped with a Switch Add-On ASIC (SAOA), which inserts 
time stamps into the CSPs upon reception and calculates the 
accurate amount of time the packet has spent on the Ethernet 
switch before it is sent to its destination. All packets from or 
to a node have to pass through the Ethernet switch and 
therefore through the Switch Add-On as well. 

Network Switch

PHY PHYPHYPHY

PHY PHYPHYPHY

MII
signals

MII
signals

MII
signals

MII
signals

MII
signals

MII
signals

MII
signals

MII
signals

Switch Add-On ASIC
(High Density FPGA)

Boot
CPLD

Boot
ROM

Oscillator

 
Figure 5: The switch add-on as it is connected to the COTS network 
switch. As CSPs traverse the switch add-on ASIC, which is realized 
as a high density FPGA, they are timestamped by the special clock 
synchronisation and timestamping hardware. Boot CPLD and Boot 
ROM are for FPGA configuration during power up. The oscillator is 
an OCXO to allow accurate measurement of the packets delay 
through the Ethernet switch. 

VI. CLOCK SYNCHRONIZATION SOFTWARE 
The clock synchronization software is executed directly on 

the NICA by a 32 bit Altera NIOS IP core. Besides executing 
the synchronization algorithm itself, the software must also 
measure system parameters like the transmission delays and 
the clock drifts. 

The synchronization algorithm is round-based; one round 
comprises the following activities: 

• The full message exchange (FME), where every node 
broadcasts a clock synchronization packet (CSP) with 
its own clock value and accuracy interval to its peers. 

• A message collection phase where the node waits for 
the messages of its  peers. 



• The computation of the new clock value and accuracy 
interval by a fault tolerant interval intersection function 
(FTI). 

• The re-synchronization itself where the computed 
clock value is taken over. 

• The free-run phase in which the clock simply runs 
without any interference from the algorithm. 

The transmission of a CSP is periodically initiated by the 
host CPU. Timestamping is done on the fly by the NICA 
hardware, so the software only needs to collect the data from 
the packets passing through the NIC. 

The time intervals contained in an incoming CSP need to 
be adjusted before they can be used in the FTI algorithm: The 
computation phase where the intervals are actually used is 
some time after the FME, so although the intervals a node has 
received were correct when they were sent, they already have 
deteriorated by the time they are used due to two effects: 

First, we must consider the message delay which stems 
from transmitting the message on the network. This delay 
consists of a deterministic part d and an indeterministic part 
e±. The actual delay di of a message on the network (without 
switches) can be bounded by the interval [d] = [d - e-, d + e+] 
where the expectation E(d i) = d. Delays added by switches are 
protocolled by the switch add-on and are handled separately 
to keep the indeterministic part of the message transmission 
delay as low as possible. 

Secondly, since all oscillators deviate slightly from their 
ideal frequency as depicted in Figure 2, the software has to 
compensate for the clock drifts as well.  

In consequence, the algorithm first adjusts the received 
intervals to reflect the current state of the remote clocks 
before using them for the intersection function. The accurate 
knowledge about transmission delays and clock drifts required 
for the adjustment is gained from periodic transmission delay 
and rate measurements. Like CSPs, these measurement 
packets are sent by the host CPU. 

Neither clock synchronization nor system parameter 
measurement are very demanding in terms of hardware 
resources. In fact, a large part of the computational effort goes 
into handling the 96 bit integers representing the timestamps. 
However, if we add more sophisticated features like fault 
detection or support for partially connected networks, then the 
requirements in terms of memory and computation power 
increase considerably. Especially fault detection mechanisms 
tend to be quite demanding, which is why we do not 
implement any of these features in our first prototype. 

VII. CONCLUSION AND FUTURE WORK 
We presented an overview of our SynUTC technology, 

which facilitates high-accuracy time synchronization over 
Ethernet networks. Based upon a novel Media Independent 
Interface-based timestamping method in conjunction with 
clock rate synchronization, our approach improves the 
precision and accuracy achieved by software-based solutions 
like NTP by 4 orders of magnitude. All the hardware support 

required is provided by a single custom UTCSU ASIC, which 
contains digital circuitry for a high-resolution adjustable 
clock, timestamp ing mechanisms, the interface to a GPS 
receiver, and a microcontroller that executes the clock 
synchronization algorithm. 

A second generation prototype implementation, which is 
currently being built, will be used for a long-term system 
evaluation. It will also be required for pushing our technology 
into industrial pilot applications, which became feasible by 
our approach. 

VIII. REFERENCES 
[1] Martin Horauer, Hardware Support for Clock 

Synchronization in Distributed Systems, Supplement of 
the 2001 International Conference on Dependable 
Systems and Networks, Göteborg, Sweden, 1-4 July 
2001, pp. A-10 – A-13. 

[2] M. Horauer, R. Höller, Integration of highly accurate 
Clock Synchronization into Ethernet-based Distributed 
Systems, SSGRR 2002w, 2002, ISBN 88-85280-62-5. 

[3] Ulrich Schmid, et al., A Network Time Interface M-
Module for Distributing GPS-time over LANs, J. of 
Real-Time Systems 18(1), 2000, pp. 24-57. 

[4] Ulrich Schmid, Martin Horauer, Nikolaus Kerö, How to 
Distribute GPS-Time over COTS-based LANs, 
Proceedings of the 31st IEEE Precise Time and Time 
Interval Systems and Application Meeting, Dana Point, 
California, USA, December 1999, pp. 545-560. 

[5] C. Fetzer, F. Cristian, Integrating External and Internal 
Clock Synchronization, Journal of Real-Time Systems, 
May 1997, No. 3, Vol. 12 (2), pp. 123–172. 

[6] U. Schmid and K. Schossmaier, Interval-based clock 
synchronization, Journal of Real-Time Systems, May 
1997, No. 3, Vol. 12 (2), pp. 173–228. 

[7] D. Höchtl, U. Schmid, Long-Term Evaluation of GPS 
Timing Receiver Failures, Proceedings of the 29th IEEE 
Precise Time and Time Interval Systems and Application 
Meeting (PTTI’97), Dec. 1997, pp. 165-180. 

[8] D. L. Mills, Internet time synchronization: The network 
time protocol, IEEE Transactions on Communications, 
October 1991, pp. 1482-1493. 

[9] D. L. Mills, Improved algorithms for synchronizing 
computer network clocks, IEEE Transactions on 
Networking, June 1995, pp. 245-254. 

[10] K. Schossmaier, U. Schmid, M. Horauer, D. Loy, 
Specification and Implementation of the Universal Time 
Coordinated Synchronization Unit (UTCSU), Journal of 
Real-Time Systems, May 1997, pp. 295-327. 

[11] U. Schmid, Orthogonal Accuracy Clock 
Synchronization, Chicago Journal of Theoretical 
Computer Science, 2000, pp. 3-77. 

[12] K. Schossmaier, An Interval –Based Framework for 
Clock Rate Synchronization Algorithms, Proceedings 
16th Symposium on Principles of Distributed Computing, 
August 1997, pp. 169-178. 


