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Abstract 
A digital circuit board, employing Field Programmable 

Gate Array (FPGA) technology, has been built to emulate 
the logic of the pipeline memory of the APV25 readout 
circuit for the CMS Silicon Strip Tracker. The primary 
function of the APVE design is to prevent buffer overflows 
in the APV25.  It will also provide information to the Front 
End Drivers (FEDs) to ensure synchronisation throughout 
the Silicon Strip Tracker. The purpose and functionality of 
the APVE is presented along with a prediction of the 
performance from simulation results. 

I. INTRODUCTION 
The CMS Silicon Strip Tracker APV25 readout chip [1, 

2] is designed to record analogue data at a rate of 40MHz.  
Data are stored in analogue pipelines on the readout chip. 
Upon reception of a Level 1 Accept (L1A) signal from the 
Trigger Control System (TCS) [3], data are transferred 
~100m via optical links [4] to Front End Driver (FED) 
cards [5] located in the CMS electronics room. The FEDs 
digitise the analogue data and employ fast FPGAs to apply 
pedestal and noise corrections and to reduce the raw data 
sample by cluster finding. The clustered data are then 
transmitted to the CMS DAQ via S-links[3, 6]. 

The maximum average frequency of L1As will be 
100kHz (10�s period) while events can be read out from 
the APV25 at a rate of one event per 7�s. To allow for 
Poisson fluctuations of the First Level Trigger (FLT) rate, 
buffers have been introduced both at the APV25 and the 
FED level. In the APV25 this has been achieved by simply 
extending the analogue pipeline already necessary for 
buffering data until receipt of a L1A.  The CMS Trigger 
design [7, 8] requires that all readout buffers are monitored 
and that their status classification (Busy, Ready, Warning-
Overflow, Error, Out-Of-Sync) is transmitted back to the 
TCS.  The TCS may then inhibit triggers from the FLT if 
the status is Busy or take other action depending on the 
information it receives.   

Monitoring the APV25 buffers, which are located on 
the CMS detector, poses a particular challenge because 
Poisson fluctuations of the FLT rate can produce L1As 
within time intervals which are shorter than the travel time 
of the monitoring signals from the CMS detector to the 
CMS electronics room.  Fast monitoring signals coming 
from the CMS detector cannot therefore provide 
sufficiently early warning that APV25 buffers are about to 

overflow. The consequence is that the APV25 buffers 
would overflow and data would be lost.  The APV25 would 
need to be reset.  

 

 
 

Figure 1: The APVE board 

To avoid buffer overflows, an APV25 buffer emulator 
board (APVE) which emulates exactly the status of the 
APV25 buffers is under development (fig. 1). The APVE 
will be installed very close to the TCS crate. Hence, it will 
be able to report the status of the APV25 buffers to the 
TCS (Trigger Control System) quickly enough. The APVE 
uses fast FPGA technology and is capable of determining 
the APV25 status in � 2 LHC clock cycles, thus ensuring 
maximum buffer efficiency and preventing APV25 buffers 
from overflowing.  

The APVE will also be used to transmit the address of 
the memory cell in the APV25 that was used to buffer the 
L1A event.  This address is included in the header of the 
APV25 data frames sent to the FEDs.  The “golden” 
pipeline address received from the APVE will be compared 
with the actual ones coming from the tracker, thus 
providing an important verification that synchronisation has 
been maintained. 



II. BUFFER OVERFLOWS IN THE APV25 
When the APVE detects that a buffer overflow is about 

to occur it will send the status signal Busy to the TCS.  The 
TCS will respond by vetoing further L1As. 

L1As may be issued at maximum rate of 1 every 3 
bunch crossings.  Consequently, if we want to make 
maximum use of the APV25 buffers by only vetoing L1As 
when all the buffers are full we need the control loop from 
TCS L1A inhibit gate to APVE and back again to take less 
than 3 bunch crossings.  If this were not the case a further 
L1A may be allowed through by the TCS before the APVE 
has had time to report that the APV25 buffers are full.  The 
additional L1A would cause the full buffer to overflow and 
all APV25s would need to be reset.  Control loops larger 
than 3 bunch crossings must assert Busy before the buffers 
are full to provide space for additional L1As that may pass 
through the TCS before the L1A inhibit is applied.  The 
number of buffers required for additional L1As after Busy 
has been asserted (i.e. determined by the magnitude of the 
control loop) is set by a VME write. 

III. CONTROL STRUCTURE 
To form a small TCS-APVE control loop the following 

control structure has been adopted (fig. 2).  The APVE 
receives the LHC clock and following control signals; L1A; 
Level 1 Reset (L1Reset); Bunch Crossing 0 (BC0); Event 
Counter Reset (ECR); Orbit Counter Reset (OCR) from 
both a Central TCS  (CTCS) & Local TCS (LTCS).  The 
Local TCS allows the Tracker to operate when the main 
Trigger system is down for maintenance.  CTCS or LTCS 
can be selected under VME control.  

The APVE sends back the Tracker status signal which 
is either Busy, Warning-Overflow, Out-Of-Sync, Ready or 
Error to the active TCS.  Error is asserted to the unused 
TCS.  The Tracker status is derived by combining the 
APVE status signal with the equivalent ones coming from 
the FEDs. 

The APVE clock and control signal input from each 
TCS, the APVE status output to each TCS and merged 
FED status input are transmitted as LVDS logic on 
standard Ethernet type cable and connectors (i.e. 4 bit, 
twisted pair cables of approx 100 ohm impedance with RJ-
45 connectors).  The control signals are encoded using 
3bits, with the remaining bit used for the LHC clock.  The 
APVE status is encoded with all 4 bits.  

The “golden” APV25 pipeline address is transmitted to 
the FEDs via the TTCci B channel [9].  APV25s in the 
Tracker receive L1As and control information via the FEC 
and CCU ring control system.  They send data frames, 
which include the pipeline address of each event,  to the 
FEDs where the pipeline address is checked. 

The Tracker can be operated in 4 separate partitions and 
thus 4 APVE modules are required. 
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Figure 2: The CMS Tracker control system.  Control signals 
(solid line) are generated by the Central or Local TCS.  Data is 

sent from the APV25s to the FEDs (dotted  line). The APVE and 
FED status are reported back to the Central and Local TCS (dot-

dash line).  The “golden” pipeline address (dashed line) is 
transmitted to the FEDs via the TTCci B channel 

IV. IMPLEMENTATION 
The APVE is a standard 6U VME board with A24/D16 

addressing.  All the logic, with the exception of that used to 
provide a back up clock is implemented in a single Xilinx 
Virtex-II FPGA (XC2V1000) [10]. 

To monitor the buffer status of the APV25 two options 
have been implemented.  The first and simplest method 
uses a real APV25 chip and a counter to keep track of the 
number of events waiting to be read out of the APV25.  
The counter is incremented every time a L1A arrives and 
decremented every time an event is read out from the 
APV25. 

The second method uses an FPGA emulation of the 
APV25 in real time.  This provides complete knowledge 
about the status of the internal APV25 buffer logic and thus 
the maximum buffer efficiency is achieved.  This method 
places stringent demands on timing within the FPGA yet 
early indications are that it will work. 

In addition to the buffer status logic the FPGA contains 
a VME bus to Wishbone bus [11] bridge that allows extra 
FPGA components to be easily added.  The components 
currently attached to the Wishbone bus are; the APVE 
control and status registers; an I2C interface for 
communication with the real APV25; a 64bit wide by 4k 
deep status memory.  The latter records any change in 
status of the APV25 emulator, FED input, or  Central and 
Local TCS feedback signals.  The 64bits are composed of 



the status signals (4x4bits), bunch crossing number 
(12bits), orbit number (32bits) and reserved area (4bits). 

V. TRACKER EFFICIENCY 
The Tracker induced dead time versus the length of the 

control loop has been studied.  The APV25 can be operated 
in two modes.  In peak mode 31 L1A buffers are available 
whereas in deconvolution mode only 10 L1A buffers, each 
containing three pipeline samples, are available.  
Deconvolution is therefore the most demanding mode of 
operation. 
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Figure 3: Tracker deadtime versus the magnitude of the control 

loop and the maximum buffer size allowed by such a control loop.  
The APV25 is operating in deconvolution mode with a maximum 

buffer size of 10 and a raw L1A rate of 100kHz.  Buffer size 
calculated and thus deadtime calculated using both a real APV25 

(dashed line) and a simulation of the APV25 (solid line).  The 
better performance achieved with simulation is due to a greater 

knowledge of the state of internal APV25 buffer logic. 

The Tracker deadtime has been plotted (fig. 3) versus 
the number of buffers used for a 100kHz raw L1A rate with 
the APV25 in deconvolution mode.  L1As which would 
have produced a L1A separation of less than 3 bunch 
crossings were vetoed, but any other possible trigger rules 
were ignored.  The deadtime was calculated from the ratio 
of L1As that were vetoed because the APVE was asserting 
Busy and the raw L1A rate.  The buffers were monitored 
using a real APV25 (dashed line) and a C code simulation 
of the APV25 internal buffer logic (solid line) derived from 
previous work [12]. 

The C code simulation performs better than the real 
APV25 because we have more precise knowledge of the 
buffer states within the APV25.  The C code has been 
translated into the hardware description language VHDL, 
which will be downloaded into the FPGA. 

The current control structure (fig. 2) should produce a 
control loop of just a few clock cycles.  The number of 
buffers used in deconvolution mode should therefore be 8, 
9 or all 10.  This corresponds to a deadtime of <0.25% if a 
real APV25 is used or <0.13% if a hardware emulation of 
the APV25 is used. 

VI. PIPELINE ADDRESS TRANSMISSION 
The APVE “golden” pipeline address is transmitted to 

the FEDs by the Trigger, Timing and Control (TTC) 
system [13].  The TTC distributes to the experiment, via a 
single optical fibre, a clock, and 2 data channels.  Channel 
A is used for L1A transmission whereas channel B is used 
for control commands.  The TCS initiates B channel 
commands and the TTCci formats them.  Channels A & B 
are then sent to a TTCex for encoding and transmission on 
optical fibre. 

The “golden” pipeline address will be sent 
asynchronously on the B channel so that it does not 
interfere with synchronous commands being initiated by 
the TCS.  However, the pipeline address must not be 
blocked by transmission of synchronous B channel 
commands for a long time period if the pipeline address is 
to reach the FED before the FED is ready to check it.  This 
requires guaranteed asynchronous bandwidth on the B 
channel of � 42clks (pipeline address transmission length) 
[14] every 280clks (APV25 data frame length).  This 
requires the TCS, that initiates the B commands, and 
TTCci, that implements the B commands, to follow certain 
rules. 

The TCS (Central & Local) must separate synchronous 
B channel commands by � 88clk cycles (fig. 4).  This 
ensures that a pipeline address may be transmitted between 
successive synchronous B channel commands.  The latter 
should take no longer than 84clk cycles to complete if an 
inhibit period of 42clk cycles is chosen on the TTCci.  The 
pipeline address will take longer than the 4clk cycle gap to 
be sent, but once started it is allowed to complete during 
the inhibit period that exists prior to a synchronous 
command being sent (16 or 42clk cycles).  The purpose of 
the inhibit period is to free the B channel for a synchronous 
command by allowing any currently executing command to 
finish, but by blocking any new command from starting. 

Tracker TTCci must maintain this command separation.  
All B channel commands must be initiated by the TCS and 
have the same inhibit duration of  42clk cycles, and have 
the same inhibit delay.  TTCci “doubles” are not allowed. 

VII. CONCLUSIONS 
A VME board has been designed to prevent buffer 

overflows in the CMS Tracker.  The design of the board 
and its integration into the CMS control structure ensure 
that the Tracker deadtime is kept to a minimum. 

The deadtime is determined by the magnitude of the 
control loop formed between the APVE and the TCS and 
the type of buffer monitoring chosen.  The latter can be 



achieved with either a real APV25 chip or a hardware 
emulation of the chip in an FPGA.  If we assume a TCS-
APVE control loop of less than 9 clock cycles these yield a 
deadtime of less than 0.25% and less than 0.13% 
respectively. 
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