
The APVE emulator to prevent front-end buffer overflows within the CMS
Silicon Strip Tracker

G. Iles, W. Cameron, C. Foudas, G. Hall, N. Marinelli

Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW
gm.iles@ic.ac.uk

Abstract
A digital circuit board, employing Field Programmable

Gate Array (FPGA) technology, has been built to emulate
the logic of the pipeline memory of the APV25 readout
circuit for the CMS Silicon Strip Tracker. The primary
function of the APVE design is to prevent buffer overflows
in the APV25. It will also provide information to the Front
End Drivers (FEDs) to ensure synchronisation throughout
the Silicon Strip Tracker. The purpose and functionality of
the APVE is presented along with a prediction of the
performance from simulation results.

I. INTRODUCTION
The CMS Silicon Strip Tracker APV25 readout chip [1,

2] is designed to record analogue data at a rate of 40MHz.
Data are stored in analogue pipelines on the readout chip.
Upon reception of a Level 1 Accept (L1A) signal from the
Trigger Control System (TCS) [3], data are transferred
~100m via optical links [4] to Front End Driver (FED)
cards [5] located in the CMS electronics room. The FEDs
digitise the analogue data and employ fast FPGAs to apply
pedestal and noise corrections and to reduce the raw data
sample by cluster finding. The clustered data are then
transmitted to the CMS DAQ via S-links[3, 6].

The maximum average frequency of L1As will be
100kHz (10�s period) while events can be read out from
the APV25 at a rate of one event per 7�s. To allow for
Poisson fluctuations of the First Level Trigger (FLT) rate,
buffers have been introduced both at the APV25 and the
FED level. In the APV25 this has been achieved by simply
extending the analogue pipeline already necessary for
buffering data until receipt of a L1A. The CMS Trigger
design [7, 8] requires that all readout buffers are monitored
and that their status classification (Busy, Ready, Warning-
Overflow, Error, Out-Of-Sync) is transmitted back to the
TCS. The TCS may then inhibit triggers from the FLT if
the status is Busy or take other action depending on the
information it receives.

Monitoring the APV25 buffers, which are located on
the CMS detector, poses a particular challenge because
Poisson fluctuations of the FLT rate can produce L1As
within time intervals which are shorter than the travel time
of the monitoring signals from the CMS detector to the
CMS electronics room. Fast monitoring signals coming
from the CMS detector cannot therefore provide
sufficiently early warning that APV25 buffers are about to

overflow. The consequence is that the APV25 buffers
would overflow and data would be lost. The APV25 would
need to be reset.

Figure 1: The APVE board

To avoid buffer overflows, an APV25 buffer emulator
board (APVE) which emulates exactly the status of the
APV25 buffers is under development (fig. 1). The APVE
will be installed very close to the TCS crate. Hence, it will
be able to report the status of the APV25 buffers to the
TCS (Trigger Control System) quickly enough. The APVE
uses fast FPGA technology and is capable of determining
the APV25 status in � 2 LHC clock cycles, thus ensuring
maximum buffer efficiency and preventing APV25 buffers
from overflowing.

The APVE will also be used to transmit the address of
the memory cell in the APV25 that was used to buffer the
L1A event. This address is included in the header of the
APV25 data frames sent to the FEDs. The “golden”
pipeline address received from the APVE will be compared
with the actual ones coming from the tracker, thus
providing an important verification that synchronisation has
been maintained.

II. BUFFER OVERFLOWS IN THE APV25
When the APVE detects that a buffer overflow is about

to occur it will send the status signal Busy to the TCS. The
TCS will respond by vetoing further L1As.

L1As may be issued at maximum rate of 1 every 3
bunch crossings. Consequently, if we want to make
maximum use of the APV25 buffers by only vetoing L1As
when all the buffers are full we need the control loop from
TCS L1A inhibit gate to APVE and back again to take less
than 3 bunch crossings. If this were not the case a further
L1A may be allowed through by the TCS before the APVE
has had time to report that the APV25 buffers are full. The
additional L1A would cause the full buffer to overflow and
all APV25s would need to be reset. Control loops larger
than 3 bunch crossings must assert Busy before the buffers
are full to provide space for additional L1As that may pass
through the TCS before the L1A inhibit is applied. The
number of buffers required for additional L1As after Busy
has been asserted (i.e. determined by the magnitude of the
control loop) is set by a VME write.

III. CONTROL STRUCTURE
To form a small TCS-APVE control loop the following

control structure has been adopted (fig. 2). The APVE
receives the LHC clock and following control signals; L1A;
Level 1 Reset (L1Reset); Bunch Crossing 0 (BC0); Event
Counter Reset (ECR); Orbit Counter Reset (OCR) from
both a Central TCS (CTCS) & Local TCS (LTCS). The
Local TCS allows the Tracker to operate when the main
Trigger system is down for maintenance. CTCS or LTCS
can be selected under VME control.

The APVE sends back the Tracker status signal which
is either Busy, Warning-Overflow, Out-Of-Sync, Ready or
Error to the active TCS. Error is asserted to the unused
TCS. The Tracker status is derived by combining the
APVE status signal with the equivalent ones coming from
the FEDs.

The APVE clock and control signal input from each
TCS, the APVE status output to each TCS and merged
FED status input are transmitted as LVDS logic on
standard Ethernet type cable and connectors (i.e. 4 bit,
twisted pair cables of approx 100 ohm impedance with RJ-
45 connectors). The control signals are encoded using
3bits, with the remaining bit used for the LHC clock. The
APVE status is encoded with all 4 bits.

The “golden” APV25 pipeline address is transmitted to
the FEDs via the TTCci B channel [9]. APV25s in the
Tracker receive L1As and control information via the FEC
and CCU ring control system. They send data frames,
which include the pipeline address of each event, to the
FEDs where the pipeline address is checked.

The Tracker can be operated in 4 separate partitions and
thus 4 APVE modules are required.

APVE TTCci/ex/tx

APV

CTCS LTCS

FEC

CCU Ring

FED

FMM

Other FEDs

APVE TTCci/ex/tx

APV

CTCS LTCS

FEC

CCU Ring

FED

FMM

Other FEDs

Figure 2: The CMS Tracker control system. Control signals
(solid line) are generated by the Central or Local TCS. Data is

sent from the APV25s to the FEDs (dotted line). The APVE and
FED status are reported back to the Central and Local TCS (dot-

dash line). The “golden” pipeline address (dashed line) is
transmitted to the FEDs via the TTCci B channel

IV. IMPLEMENTATION
The APVE is a standard 6U VME board with A24/D16

addressing. All the logic, with the exception of that used to
provide a back up clock is implemented in a single Xilinx
Virtex-II FPGA (XC2V1000) [10].

To monitor the buffer status of the APV25 two options
have been implemented. The first and simplest method
uses a real APV25 chip and a counter to keep track of the
number of events waiting to be read out of the APV25.
The counter is incremented every time a L1A arrives and
decremented every time an event is read out from the
APV25.

The second method uses an FPGA emulation of the
APV25 in real time. This provides complete knowledge
about the status of the internal APV25 buffer logic and thus
the maximum buffer efficiency is achieved. This method
places stringent demands on timing within the FPGA yet
early indications are that it will work.

In addition to the buffer status logic the FPGA contains
a VME bus to Wishbone bus [11] bridge that allows extra
FPGA components to be easily added. The components
currently attached to the Wishbone bus are; the APVE
control and status registers; an I2C interface for
communication with the real APV25; a 64bit wide by 4k
deep status memory. The latter records any change in
status of the APV25 emulator, FED input, or Central and
Local TCS feedback signals. The 64bits are composed of

the status signals (4x4bits), bunch crossing number
(12bits), orbit number (32bits) and reserved area (4bits).

V. TRACKER EFFICIENCY
The Tracker induced dead time versus the length of the

control loop has been studied. The APV25 can be operated
in two modes. In peak mode 31 L1A buffers are available
whereas in deconvolution mode only 10 L1A buffers, each
containing three pipeline samples, are available.
Deconvolution is therefore the most demanding mode of
operation.

0.01

2

4

6
8

0.1

2

4

6
8

1

T
ra

ck
er

 d
ea

dt
im

e
du

e
to

 A
PV

25
 (%

)

10 9 8 7
Number of APV buffers used

129630
Control loop size (LHC bunch crossings)

Figure 3: Tracker deadtime versus the magnitude of the control

loop and the maximum buffer size allowed by such a control loop.
The APV25 is operating in deconvolution mode with a maximum

buffer size of 10 and a raw L1A rate of 100kHz. Buffer size
calculated and thus deadtime calculated using both a real APV25

(dashed line) and a simulation of the APV25 (solid line). The
better performance achieved with simulation is due to a greater

knowledge of the state of internal APV25 buffer logic.

The Tracker deadtime has been plotted (fig. 3) versus
the number of buffers used for a 100kHz raw L1A rate with
the APV25 in deconvolution mode. L1As which would
have produced a L1A separation of less than 3 bunch
crossings were vetoed, but any other possible trigger rules
were ignored. The deadtime was calculated from the ratio
of L1As that were vetoed because the APVE was asserting
Busy and the raw L1A rate. The buffers were monitored
using a real APV25 (dashed line) and a C code simulation
of the APV25 internal buffer logic (solid line) derived from
previous work [12].

The C code simulation performs better than the real
APV25 because we have more precise knowledge of the
buffer states within the APV25. The C code has been
translated into the hardware description language VHDL,
which will be downloaded into the FPGA.

The current control structure (fig. 2) should produce a
control loop of just a few clock cycles. The number of
buffers used in deconvolution mode should therefore be 8,
9 or all 10. This corresponds to a deadtime of <0.25% if a
real APV25 is used or <0.13% if a hardware emulation of
the APV25 is used.

VI. PIPELINE ADDRESS TRANSMISSION
The APVE “golden” pipeline address is transmitted to

the FEDs by the Trigger, Timing and Control (TTC)
system [13]. The TTC distributes to the experiment, via a
single optical fibre, a clock, and 2 data channels. Channel
A is used for L1A transmission whereas channel B is used
for control commands. The TCS initiates B channel
commands and the TTCci formats them. Channels A & B
are then sent to a TTCex for encoding and transmission on
optical fibre.

The “golden” pipeline address will be sent
asynchronously on the B channel so that it does not
interfere with synchronous commands being initiated by
the TCS. However, the pipeline address must not be
blocked by transmission of synchronous B channel
commands for a long time period if the pipeline address is
to reach the FED before the FED is ready to check it. This
requires guaranteed asynchronous bandwidth on the B
channel of � 42clks (pipeline address transmission length)
[14] every 280clks (APV25 data frame length). This
requires the TCS, that initiates the B commands, and
TTCci, that implements the B commands, to follow certain
rules.

The TCS (Central & Local) must separate synchronous
B channel commands by � 88clk cycles (fig. 4). This
ensures that a pipeline address may be transmitted between
successive synchronous B channel commands. The latter
should take no longer than 84clk cycles to complete if an
inhibit period of 42clk cycles is chosen on the TTCci. The
pipeline address will take longer than the 4clk cycle gap to
be sent, but once started it is allowed to complete during
the inhibit period that exists prior to a synchronous
command being sent (16 or 42clk cycles). The purpose of
the inhibit period is to free the B channel for a synchronous
command by allowing any currently executing command to
finish, but by blocking any new command from starting.

Tracker TTCci must maintain this command separation.
All B channel commands must be initiated by the TCS and
have the same inhibit duration of 42clk cycles, and have
the same inhibit delay. TTCci “doubles” are not allowed.

VII. CONCLUSIONS
A VME board has been designed to prevent buffer

overflows in the CMS Tracker. The design of the board
and its integration into the CMS control structure ensure
that the Tracker deadtime is kept to a minimum.

The deadtime is determined by the magnitude of the
control loop formed between the APVE and the TCS and
the type of buffer monitoring chosen. The latter can be

achieved with either a real APV25 chip or a hardware
emulation of the chip in an FPGA. If we assume a TCS-
APVE control loop of less than 9 clock cycles these yield a
deadtime of less than 0.25% and less than 0.13%
respectively.

VIII. ACKNOWLEDGEMENTS
We would like to thank the following; Sarah

Greenwood for her layout of the design; John Coughlan for
his comments on pipeline address transmission on the B
channel; Rob Halsall for his help with FPGA design
software; Joao Varela and Anton Taurok for discussions
about integrating the APVE into the CMS control structure.

IX. REFERENCES
[1] M. Raymond et. al., “The CMS Tracker APV25

0.25µm CMOS readout chip”, Sixth Workshop on
Electronics for LHC Experiments,
CERN/LHCC/2000-041.

[2] The Tracker Project Technical Design Report,
CERN/LHCC/98-6.

[3] A. Racz et. al., “Trigger Throttling System for
CMS DAQ”, Sixth Workshop on Electronics for
LHC Experiments, CERN/LHCC/2000-041.

[4] F. Vasey et. al., “Project status of the CMS optical
links”, Sixth Workshop on Electronics for LHC
Experiments, CERN/LHCC/2000-041.

[5] J. Coughlan et. al., “The Front-End Driver Card
for the CMS Silicon Strip Tracker Readout”,
These proceedings.

[6] A. Racz et. al., “CMS Front-End/DAQ
Interfacing”, Sixth Workshop on Electronics for
LHC Experiments, CERN/LHCC/2000-041.

[7] The Trigger and Data Acquisition (TriDAS)
Project Technical Design Report, Volume 1, The
Level-1 Trigger, CERN/LHCC/2000-038.

[8] J. Varela, “Timing and Synchronization in the
LHC Experiments”, Sixth Workshop on
Electronics for LHC Experiments,
CERN/LHCC/2000-041

[9] J. Varela, “CMS L1 Trigger Control System”,
Draft CMS Note 2002

[10] Xilinx, “Virtex-II Platform FPGA Handbook”,
www.xilinx.com.

[11] WISHBONE System-On-Chip (SoC)
Interconnection Architecture for Portable IP
Cores, Revision: B.1, Silicore Corporation, 6310
Butterworth Lane, Corcoran, MN 55340

[12] N. Marinelli, “APV Logic Simulations”, CMS
Note 1999/028

[13] B. Taylor, “Timing Distribution at the LHC”,
These proceedings.

[14] J. Christiansen, A. Marchioro, P. Moreira and T.
Toifl, “TTCrx Reference Manual, February 2001,
Version 3.2”, RD12 Working Document, CERN.

Inhibit_X (42)

Sync_X (16/42) Pipe Address_B (42)

BGo_Y (1)BGo_X (1)

Inhibit_Y (42)

Sync_YB Chan Data

88clks

TCS initiates command “X” with BGo_X signal.

TTCci inhibits new commands from starting for 42clk cycles thus guaranteeing the
B channel to be free when the synchronous command “X” is sent.

Sync Command “X” is transmitted.

New B channel command “Y” initiated by TCS after 88clks, but pipeline address “B” is started
before inhibit “Y” starts (shaded area) and once started is allowed to complete.

Figure 4: Diagram showing the “golden” pipeline address being transmitted on the B channel. The top line shows the TCS initiating
two different synchronous commands. The middle line shows the inhibit generated for each synchronous command. The bottom line
shows B channel usage. The time taken in clock cycles for each event to complete is shown in brackets after the event description.

Inhibit_X (42)

Sync_X (16/42) Pipe Address_B (42)

BGo_Y (1)BGo_X (1)

Inhibit_Y (42)

Sync_YB Chan Data

88clks

TCS initiates command “X” with BGo_X signal.

TTCci inhibits new commands from starting for 42clk cycles thus guaranteeing the
B channel to be free when the synchronous command “X” is sent.

Sync Command “X” is transmitted.

New B channel command “Y” initiated by TCS after 88clks, but pipeline address “B” is started
before inhibit “Y” starts (shaded area) and once started is allowed to complete.

Inhibit_X (42)

Sync_X (16/42) Pipe Address_B (42)

BGo_Y (1)BGo_X (1)

Inhibit_Y (42)

Sync_YB Chan Data

88clks

TCS initiates command “X” with BGo_X signal.

TTCci inhibits new commands from starting for 42clk cycles thus guaranteeing the
B channel to be free when the synchronous command “X” is sent.

Sync Command “X” is transmitted.

New B channel command “Y” initiated by TCS after 88clks, but pipeline address “B” is started
before inhibit “Y” starts (shaded area) and once started is allowed to complete.

Figure 4: Diagram showing the “golden” pipeline address being transmitted on the B channel. The top line shows the TCS initiating
two different synchronous commands. The middle line shows the inhibit generated for each synchronous command. The bottom line
shows B channel usage. The time taken in clock cycles for each event to complete is shown in brackets after the event description.

