
 “Distributed Processors allow revolutionary Hardware / Software partitioning”

Jean-Reynald Mace Jean-Louis Brelet
XILINX XILINX

 Espace Jouy Technologies CICA
 21, Rue Albert Calmette 2229, route des Cretes
 78353 – Jouy-en-Josas 06560 – Sophia-Antipolis
 France France

 Email: jean-reynald.mace@xilinx.com
 Email: jean-louis.brelet@xilinx.com

Executive Summary:
Future system designs will use, in addition to

traditional embedded processors, innovative approaches based
on flexible distributed processors, enabled by digital
programmable logic devices like complex FPGA.

The complexity of many of today’s system architectures can
be likened to highly integrated microelectronic chip design.
Traditional system partitioning is generally done at the early
stage of system architecture, by defining the tasks to be
implemented on the embedded processor(s), and the tasks to
be implemented on the hardware.

Evolution of system-on-chip, or integration of an application
in one of few devices becomes a revolution when the
technology enables innovative system architectures. The key
to this new approach is high-bandwidth communications
between distributed processors, and a flexible hardware /
software partitioning which can be adapted to the evolution of
the system in real time, and during the complete product life
cycle.

This study targets the Xilinx Virtex-II ProTM platform FPGA,
and is illustrated by comparative examples of hardware or
software implementation. Another example shows how
distributed processors can optimize interrupt management.

I. INTRODUCTION
All digital systems typically consist of some form of

hardware components, processors running software, and
memory. The system architect maps a particular system into
these various components, taking into account a wide variety
of factors, including component availability, upgradeability
requirements, legacy hardware IP and software, cost,
technical feasibility and more. A typical decision process for
system partitioning is to implement heavy data path
algorithms in hardware and control and decision making
processes in software.

II. SYSTEM PARTITIONING
Each module of a complex system is optimized for cost,

performance, bandwidth, etc without first deciding the

specific hardware or embedded software implementation.
System partitioning is defined as the mapping of a system
level architecture into specific hardware and software
components based upon application requirements, as
illustrated in figure 1.

All systems typically consist of some form of hardware
components, processors running software and memory. It is
the System Level designer’s job to map a particular system
into these various components, taking into account a wide
variety of factors. (Resources available, Technical feasibility,
Upgradeability requirements, …)

System Partitioning
• Definition:

– “The mapping of a system
level architecture into specific
HW and SW components
based upon application
requirements”

• Today Implementation in:
– Fixed HW components:

• FPGA, ASIC, ASSP,…
– SW components:

• Code running on CPU, DSP
processors, microcontrollers,…

Hardware
Components
Hardware

Components

Embedded SoftwareEmbedded Software

Ap
pli

ca
tio

n

Co
ntr

ol

Ma
na

ge
me

nt

 Figure 1 – System Partitioning Definition

Typically functions like a physical layer, memory

interfaces, protocol bridges, finite states machine (FSM),
signal processing (filters,…) algorithms, encryption functions
are designed in HW e.g. a FPGA. On the other hand, protocol
stack, user interface (GUI), diagnostics module, control
blocks, signal processing sequential blocks and encryption
algorithms are traditionally coded in SW.

Some of these functions could be implemented in either
software or hardware. The choice of which is very application
dependent and the choice of which solution to deploy may not
be straightforward. For example: Should a control algorithm

be implemented in software or would a Finite State Machine
running in hardware be a better option? The decisions will
probably be between hardware area required vs software
processor overhead required. Another example is encryption
design: There are numerous standards for encryption, and
change is common. Like the control algorithm, a hardware or
software implementation will depend on the nature of the
algorithm to be employed. This flexible mapping is shown in
figure 2.

Optimal Solutions Enabled by
On-Demand Architectural Synthesis

• Hardware:
– Physical Layer
– Memory Interfaces
– Protocol Bridges
– FSM
– Signal Processing
– Encryption

• Software:
– Protocol Stack
– User Interface
– Diagnostics
– Control
– Signal Processing
– Encryption

Flexible MappingFlexible Mapping

 Figure 1 – HW / SW flexible mapping

Once this split has been decided however, then the system
architect or lead engineer allocates tasks to the various teams.
This method though has some inherent problems:

• The partitioning is done in the earliest stages of the
design; at the moment where there is the greatest
possibility for changes

• The system partition is now fixed: If requirements
change in any way during the design process, it can
be very difficult to incorporate these changes
optimally, as the system architect is restricted to the
existing partition.

Another consequence of this method is that it also separates
software and hardware engineering teams, as shown in figure
3. Tasks are assigned to each of the groups and from the
design perspective there is a fixed interface between the two.
This often leads to barriers between the two teams.

Traditional System Design

• Fixed HW / SW partitioning
• Early and final architecture mapping
• Critical commitment made at concept level

SW mgrSW mgr

SW Dev.SW Dev. SW devSW dev SW devSW dev
Fixed Interface

HW mgrHW mgr

HW engHW eng HW engHW eng PCB engPCB eng

Hardware
Components
Hardware

Components

Embedded SoftwareEmbedded Software

 Figure 3 – HW Traditional System Design

The proposed new system partition allows a system
architecture that is fully flexible – that is able to be changed
throughout the design cycle. Such a method provides new
capabilities, including the possibility of continually
optimising a design for a particular application. The HW / SW
partition is no longer fixed but can be changed to respond to
required changes in the system design.

New System Partitioning
• Flexible HW / SW partitioning

– Enables tradeoffs throughout the process
• Architecture redefinition possible

– Tune for optimal performance and cost

HW TeamHW Team
HW TeamHW Team

SW TeamSW Team
SW TeamSW Team

SW TeamSW Team

HW TeamHW Team
Hardware

Components
Hardware

Components

Embedded SoftwareEmbedded Software

Flexible Interface

 Figure 4 – New System Partitioning

This innovative approach, as illustrated in figure 4, enables
non-traditional system architectures, where SW modules can
be implemented in HW, and HW modules can be moved to
SW at any time in the design cycle. A scalable and flexible
platform is required to optimize HW / SW integration. In
addition, a co-design methodology allow to evaluate and
modify the design attributes during development
(Performances, resource usage,…). The SW developers and
HW engineers can now create solutions at module level for
optimal systems

III. DES ENCRYPTION ALGORITHM
Communications security has rapidly become one of the

most discussed topics in the networking and
telecommunications industries, as well as in the general
media. With the advent of pervasive networks it has become
essential to protect the privacy of the data passing over those
networks. Numerous encryption mechanisms exist to enforce
security, a good discussion of which may be found in the
handbook of applied cryptography i.

As these networks develop and data rates increase, the
implementation of these mechanisms must inevitably change
also, to cope with the increased data throughput and to thwart
the attempts of those who would try to break the encryption
schemes.

In recent times, the most popular encryption/decryption
algorithm used has been the “Data Encryption Standard”
(DES) and subsequent “Triple Data Encryption Standard”
(3DES), as adopted by the US government in 1977 and later
standardized by the American National Standards Institute
(ANSI) as standard X3.92-1981/R1987.

DES Overview:

DES is a block cipher algorithm, where a message is split into
fixed length blocks and then each block encoded using a fixed
‘key’, known only to the sender and recipient. In DES, the
block length is 64 bits and the key is 56 bits in length. A full
description of the basic DES algorithm may be found in
Xilinx white paper WP115 ii

3DES is an enhanced version of this encryption/decryption
algorithm, built to be compatible with the standard DES
implementation, but offering higher data security. Encryption
is performed by passing data block through a sequence of 3
modules as follows, each with their own 56 bit key, like in
figure 5.

DES Overview

• DES Algorithm:
– Message is split into fixed length blocks
– Encode each block with fixed « key »
– Block length = 64 bits (advanced 128-b), Key length = 56 bits

• 3DES Is An Enhanced Version of Encryption / Decryption
– If Key 1 = Key 2 = Key 3, than 3DES is fully compatible with DES

Encrypt Decrypt Encrypt
Data

Key 1 Key 2 Key 3

 Figure 5 – Triple DES Algorithm

This implementation was selected such that, if all keys are set
to be the same, then the output of the 3DES encryption would
be fully compatible with single DES encryption. Likewise,
decryption would occur in a similar but complementary
manner.

System Integrator’s Dilemma

3DES is a relatively simple algorithm by today’s standards.
However it can be used to illustrate the dilemma that a System
Integrator can face when building a system that should
contain such an algorithm.

The systems Engineer must evaluate all cost and performance
constraints imposed on the system to be developed and marry
those with the technology that is available to him at that time:
For example:

− If this algorithm was to be implemented in software, what

performance processor would be needed?
− Would a specific processor be required or can an existing

processor in the system be used?
− Does that ‘shared’ processor have enough ‘horsepower’

or should the processor be upgraded?
− Perhaps the performance requirements warrant a more

dedicated solution?
− Do ASSPs exist and are they cost effective?
− Do they meet the full requirements of the system or is

some customization required?

These are just some of the questions to be addressed by the
System Integrator, Even if all of these questions can be
satisfactorily answered, there is one over-riding question that
remains:

− Can this algorithm, and thereby implementation, be fixed

or is there a possibility it may need to change in future?

This latter question can lead the system integrator back into
the loop of trading off a software and hardware solution to
enable flexibility while still meeting performance & cost
requirements. This situation is commonly referred to as the
“System Integrator’s Dilemma” – at some point, a
commitment to a particular solution must be made.

As a case in point, when considering 3DES, the likelihood of
needing to change the algorithm can be seen with the recent
adoption of the AES algorithm by the US governmentiii – the
days of 3DES may be numbered. Further, 3DES is a good
example of the variety of implementations and architectures
that a System Integrator can face.

Architectural Options

When considering the implementation of a 3DES, a number
of solutions are immediately apparent.

The popularity of DES has meant numerous hardware and
software open source implementations are publicly available.
Also, full open source hardware implementations are also
available from organization such as OpenCores
(www.opencores.org)

In attempting to address the system Integrator’s dilemma,
more and more engineers are turning to Programmable Logic
as the solution to allow fully customizable and modifiable
system implementations but which offer far higher
performance than purely software implementations.

As an example of this capability, in April 2000, Xilinx
announced the record-breaking hardware implementation of a
3DES implementation that achieved a throughput of
10.7Gbits per second throughput using first generation Virtex
architecture FPGA. Tests have not yet been done using the
second generation Virtex architecture from Xilinx, but clearly
this performance may already far exceed that of many system
requirements, so it is quite apparent that some smaller in area
or hybrid software/hardware solution may be more
appropriate.

For example, if we consider the transmit/encryption path only,
given the DES encryption module is called twice, as shown in
Figure 5 – , it may prove more advantageous to implement
solely DES encryption in hardware for acceleration purposes
and decryption is maintained as a software solution. This is
shown in figure 6

Figure 6 – HW Implementation of Encryption

However, decryption requires more compute power than
encryption and so a solution where decryption is implemented
in hardware and encryption in software is used, as shown in
figure 7, may be more optimal.

Figure 7 – HW implementation of decryption

If neither solution is appropriate, both encryption and
decryption could be implemented in hardware – two such
methods are shown in figures 8 and 9.

Figure 8 – Full HW Implementation; shared encryption

Figure 9 – Full HW Pipelined solution

Clearly there are many choices of hardware/software
partition, each offering relative advantages and disadvantages
to the system engineer. However, the choice of solution will
inevitably be limited by the availability of suitable
components and so the actual implementation will always be a
compromise that most closely meets cost and performance
requirements.

It is at this point that we can consider a totally new approach
that would allow the System engineer to develop the exact
solution for his needs, without the requirement to
compromise.

In addition, the programmable systems solution can be
changed on-demand. It is often the case that the true
capability of a given system architecture is not fully
understood until after significant development has been done.
As a consequence, making changes to that architecture would
prove costly, if even possible, and major systems engineering
decisions must be committed to early in the design cycle in
the absence of much needed data. Programmable systems
greatly reduce this risk and allow “what if?” scenarios to be
played out in the knowledge that change can be dealt with,
even after a product has shipped to a customer. This is the
enablement of true on-demand architectural synthesis.

This first example of a DES encryption algorithm offers an
excellent case study for this paper to compare hardware and

Processor
Necessary?

Processor

Data Flow

DES
Encryption

DES
Encryption

Processor Peripheral

DES
Decryption

DES
Encryption
Algorithm

DES
Decryption

Processor Peripheral

Data Flow

DES
Decryption
Algorithm

DES
Encryption

Processor Peripheral

Data Flow

DES
Encryption

Peripheral

DES
Encryption

Data Flow

embedded software solutions, and the advantages of the
flexibility in the choice beyond a simple partitioning decision.
Both software and hardware can be co-designed to optimize
the attributes of each, and thereby of the whole system.
Software and hardware engineers should be able to work
together as a cohesive team, focusing at the module level, to
ensure that each module in the design is optimal.

IV. WIRELESS LAN
A second example entails the implementation of complex

processing functions in real time. The application requires
handling of very large tables with dynamically variable
priority and lifetime events.

An efficient design solution requires a sophisticated
architecture with optimal HW/SW partitioning.

Networking Application:
Wireless LAN

Intra Forwarding Technique: Video
transmission

MPEG2
MPEG2

FTP

File transfert: FTP

QoS

 Figure 10 – Wireless LAN example

The Wireless Local Area Network (WLAN) segment is

an emerging market combining data connectivity with user
mobility. WLANs represent an attractive connectivity
alternative for a broad range of consumers and business
customers (vi).

Wireless LAN technology focuses on the PHYsical
(PHY) layer and data-link layer within the Medium Access
Control (MAC) and Logical Link Control (LLC) sub-layers of
the OSI model.

The PHY defines the electrical, mechanical, and
procedural specifications, and handles the transmission of bits
over a communication medium or channel. WLAN PHY layer
technologies include narrowband radio, infrared, Orthogonal
Frequency division Multiplexing (OFDM), Direct Sequence
Spread Spectrum (DSSS), Frequency Hopping
 Spread Spectrum (FHSS) and others technologies. The MAC
layer handles error control and synchronization between
physically connected devices communicating over a channel.
It also determines priority and allocates accesses to the
channel.

Some popular WLAN technologies are IEEE 802.11(vii).
(a and b), HiperLAN 1 and HiperLAN 2(viii).

In real time applications, the global system should include a
specific Quality of Service (QoS) in order to guarantee an
application dependent minimum bandwidth from the network.
For example when the network is shared among multiple
access point, the audio connections and the streaming video
must received a minimum bandwidth regarding the lowest
application – as file transfer as shown on figure 10.

Physical Layer

Wireless LAN: Access point
Architecture

Presentation Layer

Network Layer

Application Layer

Transport Layer
Session Layer

Data Link Layer
Bus

HOST I/F

Medium Access Control
Channel Access Control

 Figure 11 – Wireless Local Area Network or 802.11

The architecture of the Embedded System is composed of

a hierarchy of subsystem. Hardware and Software modules
must be partitioned with respect to the global specifications in
order to guaranty sufficient Bandwidth between the Host and
the external world.

A complete structure with adequate interfaces
(multiplexed bus, dedicated bus, size,…) between SW
modules (one or few processors, RTOS or Firmware, …) and
HW modules (ASSPs, FPGAs, analog component, ….) must
be chosen and optimized. (See figure 11)

• A key element is the type and size of the shared
memory (size, transfer cycles, speed….) between the
Software and the Hardware.

• The SW module is defined in terms of key features
(performance, Mips, , cache,…).

• The HW FPGA module is sized in terms of
frequency, LUTs, Block Ram…

The worst case specifications (maximum number of frames to
transmit, concurrent Interrupts, concurrent events,..) is then
used to optimize the features in all the modules.

Wireless LAN: QoS
• Wireless LAN example:

– Intra forwarding technique
– Complex algorithms of

network access with few
levels of prioritization in order
to guarantee the QoS

• Select Most Urgent Frame
– Choice is based on few

parameters:
– priority (Po to Pn)
– Lifetime (Normalized

Residual Lifetime , …
CP UP RLDIS NRL DB

Po Pn

256 Ptrs

64 Bits

Ptr of the Selected Frame

Ptr of the Received Frame

Pointer :

 Figure 12 – Prioritization to guarantee QoS

WLAN network access point such as Hiperlan 1, should

support an intra forwarding function and complex algorithms
of levels of prioritization in order to guarantee the Quality of
Service. Each Frame has a Lifetime directly related to the
application.

Due to the real nature of the system necessities a
carefully crafted frame sorting algorithm which ensures the
highest priority data is transmitted first. All the complete
frames are memorized in the shared memory. To simplify the
computations, only a pointer made up of all the lifetime
parameters is managed.

The pointers are split in a priority list and each incoming
frame is inserted in the appropriate list. All the Lifetime
parameters (residual Lifetime,...) are updated and imply the
election of the most urgent frame to transmit, as shown in
figure 12.

Several architectural approaches can satisfy these
requirements:

• Full HW implementation,
• Full SW implementation,
• Mixed solution.

QoS: Full Hardware
• Design in FPGA:

– FSM like design with adder/subtractor (~1000 LUT / 50MHz)
– One table of pointers implemented in FPGA Block Ram

• 2 BRAM used for 4 priorities
– Pipelining used
– Easy to manage the Lifetime (update every 10 us)

• Complex Function in HW:
– Electing two frames from one table of pointer by scrolling and comparison techniques

Table of ptr of frames to be transmitted

Elected ptr of Frame to transmit F11

F1
F3
F0

F10

Permutation

 Figure 13 – Full HW implementation

The full HW solution is based on a FPGA.
The design uses some Finite State Machine (FSM) with
adder/subtractors. One global table is stored in the Block
RAM of the FPGA.
Election of the most urgent frame is done by scrolling through
all tables and comparing each parameter to its neighbours.
All the features and flexibility of the FPGA HW are leveraged
to provide an efficient implementation: parallelism,
pipelining, Dual port RAM, and illustrated in figure 13.

QoS: Full Software
• Design in Firmware:

– Simple ~250 lines of C Code
– Microprocessor used: PPC 405
– One table of pointers per priority in external memory (SDRAM)
– Sort algorithm very well known and easy to implement

• Complex Function in SW:
– System Real Time Requirement
– Frame lifetime controlled by a set of timers

• In the same time new frame is coming, existing frame should move from upper priority table

…..
F41

F52
F7

F22

F11

F31
F10

F21

F1

F3
F0

F11

Highest
Priority
Table

Elected ptr of Frame to transmit

 Figure 14 – Full SW solution

The full SW solution is based on a PPC 405 running “C
code”. For each priority a table is created and memorized in
an external memory.
A standard, well known sort algorithm is employed for sorting
each table. (See figure 14)
Most urgent frame selection is just a matter of sorting all the
tables. Upgrading the Lifetime parameters is accomplished
via a set of timers.
 A disadvantage of this pure SW approach is that the real time
behaviour is complex to manage. Computational throughput
is enhanced by increasing the microprocessor clock
frequency.

QoS: Mixed HW / SW
• Hardware Module:

– Liftetime and move ptr between tables
– Design :

• FSM like design with adder/subtractor (~200 lut-50MHz)
• 4 tables of pointers per priority with the FPGA Block Ram
• Updated Lifetime by scrolling
• Semaphore

• Software/Hardware interface:
– Semaphore based communication

• Software Module:
– Insertion and sort of the tables
– Design :

• Easy to write (~200 lines of C Code)
• Sort algorithm
• Semaphore lib

F41

F52
F7

F22

…..

F41

F52
F7

F22

 Figure 15 – Mixed HW / SW solution

The mixed solution is based on the advantages of both
implementations, as shown in figure 15.

• HW: handles the Lifetime and the moved
request of the pointers between tables. The
scrolling technique is used,

• SW: manages the sorting, insertion and
movement of the pointers tables. Standard
algorithm is used,

• I/F HW/SW: the synchronisation and the
communication between the SW and HW is
done by semaphores and Interrupt requests
(IRQ).

V. ENABLING TECHNOLOGY: VIRTEX-II PRO

In March, 2002 Xilinx announced the availability of the

first Programmable System solution in the form of Virtex-II
ProTM. Based upon the award winning Virtex-II
Architectureiv,v, Virtex-II Pro is the first device family to fully
immerse both High Performance microprocessors and High
Speed serial channels into a fully programmable architecture.
Figure 16 represents the platform FPGA architecture.

Platform FPGA Architecture

• A Solution that provides:
– IP Immersion

• The ability to integrate a wide
variety of Hard & Soft IP

– A single Platform for
multiple applications

– Total customization
– Full Hardware and Firmware

upgradabilityHard-IP

Soft-IP

System Connectivity

HW functions

 Figure 16 – Platform FPGA architecture

There are two kinds of challenges faced by the designers. The
first one is to accelerate the performance of a single but large
task. The solutions may be parallel processing using multiple
processors. This is a first approach to distributed processing.
Multiple processors run the task in parallel. The second
challenge is to accelerate the performance of multiple
different tasks in a system. By using multiple processors - one
processor per task - each processor is dedicated at executing
that specific task. Virtex-II Pro is illustrated in figure 17.

MGT

MGT

MGT

MGT

Fabric

PowerPC 405 Core
300+ MHz / 450+ DMIPS
Performance
Up to 4 per device

•
•

•

3.125 Gbps Multi-Gigabit
Transceivers (MGTs)
Supports 10 Gbps standards
Up to 24 per device

•

•

• IP-Immersion™ Fabric
• ActiveInterconnect™
• 18Kb Dual-Port RAM
• Xtreme™ Multipliers
• 16 Global Clock Domains

Virtex-II Pro Platform FPGA

 Figure 17 – Virtex-II Pro Platform FPGA

On-Chip memory (OCM) technology delivers the unique

internal bandwidth of 6.4 Gbps between the Instruction or
Data cache and the adjacent block RAM, as shown in figure
18. To illustrate this point, the example of the time required
for changing from one task context to another due to hardware
or software interrupt is often a critical parameter. Sometimes
the interrupt task to be performed is small in relation to the
time context change. If the number of resources and the
number of interruptions become important then the timing
budget for the Processor for the main task becomes too small.
With the possibility to use several small soft processors
around the PowerPC allow the distribution in an efficient
manner the processing of the different tasks.

High-Bandwidth Communications
• Code (SW) and data are

stored in BRAM, without any
external resources

• On-Chip Memory (OCM)
offers an unique data
bandwidth between FPGA
fabric (HW) and embedded
PowerPC core (SW)

• High-Bandwidth
Communications between
distributed processorsOCM™ Technology

BlockRAMs

I-Cache
16KB MMU

Fetch &
Decode

Timers
and

Debug
Logic

Execution Unit
32x32b GPR
ALU, MAC

D-Cache
16KB

Acceleration
Logic

6.4Gb/sec

6.4Gb/sec

6.4Gb/sec

6.4Gb/sec

 Figure 18 – High Bandwith through OCM

The Virtex-II Pro platform FPGA solution from Xilinx is

the most technically sophisticated silicon and software
product today. The goal is to revolutionize system architecture
“from ground up”, and offer a unique flexible platform to
design distributed processors in a system, and high-speed
connections. The Virtex-II Pro devices incorporate 3.125

Gbps full-duplex transceivers, and up to four PowerPC (IBM
PPC 405) processor cores. With the addition of soft cores like
the MicroBlazeTM (32-bit RISC processor) and the PicoBlaze
(8-bit microcontroller) from Xilinx, the Virtex-II Pro is the
solution to design hierarchical distributed processors systems
with the innovative hardware / software partitioning trade-offs
explain in this paper. The previous examples show that
complex system architectures now have a simple, flexible and
reprogrammable solution.

Virtex-II Pro is a silicon enabler that allows a System
Integrator to explore quickly and easily many different
architectures for a given problem, to assess both hardware and
software implementations, and so make the decision “which is
best?”. Even with an algorithm as simple as 3DES, many
options are possible. However with Programmable Systems
technology, for the first time an engineer is able to build
precisely the solution required and without requiring to
employ prohibitively costly and complex SoC type
development – this technology is available to all engineers.

Flexibility of Programmable
Systems

• Nearly all Systems are composed of:
– Logic + Memory + Processor

• Virtex-II Pro enables optimum “system
partitioning” between Hardware and Software

Performing SW tasks
in HW is Inefficient

Performing HW tasks
in SW is Slow

Provides the best of both worlds

 Figure 19 – HW Flexibility of programmable systems

But above all it can also address one of the most complex
issue facing the System Integrator – how to cope with
change? The figure 19 shows HW / SW trade-off. Risk can be
reduced as architectural changes can be accommodated late in
a design cycle, even to the extent of deploying completely
different implementations employing different algorithms.
New algorithms will require alternative architectures – those
architectures can be accommodated for and built, even after a
product has shipped to the end customer. Whether software or
a hardware implementation is “best” – an engineer can always
change his mind.

VI. CONCLUSION
Virtex-II Pro platform FPGA provides an application-

specific mix of logic, memory, integrated processors, and high
bandwidth I/O.
Embedded and distributed processors allow flexible HW / SW
partitioning with optimal mapping at the module level, to
design with best solution of both worlds. Virtex-II Pro is the
first programmable system to enable true architectural
Synthesis, with unique bandwidth between embedded
processors and HW.

References

All details about the Virtex-II Pro product can be found at:
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title
=Virtex-II+Pro+FPGAs

i Handbook of Applied Cryptography - Alfred J. Menezes,
Paul C. van Oorschot and Scott A. Vanstone - CRC Press
ISBN: 0-8493-8523-7
October 1996

ii Data Encryption using DES/Triple-DES
Functionality in Spartan-II FPGAs – Amit Dhir, Xilinx,
WP115, March 2000

iii Federal Register / Vol. 66, No. 235 / Thursday, December 6,
2001 / Notices

iv Electronic Products Magazine, January 2002 – Virtex-II
wins Product of the Year Award

v Virtex-II Pro Handbook, www.xilinx.com

vi “The Home Networking Revolution” – Amit Dhir Xilinx, a
designer guide 2001

vii IEEE : 802.11 Wireless local area networks,

viii ETSI : Radio Equipement and System- High
PERformance Radio Local Area Network (HIPERLAN) –
type 1 - EN 300 652

