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Abstract 
The S-LINK is a CERN developed standard that defines a 

point-to-point data link. In many applications and test systems 
the data transmitted over the link is moved to a PCI based 
computer. An overview of the evolution of S-LINK to PCI 
interfaces is given. The performance of these interfaces is 
presented and a description of the FILAR, a future PCI 
interface with four integrated inputs, is given.  

I. INTRODUCTION 
The S-LINK is a standard that defines interfaces of source 

and destination sides of a point-to-point data link featuring a 
bandwidth of up to 160 Mbytes/s. A link complying with the 
S-LINK specification [1] can be thought of as a virtual cable 
that can move data or control words from any layer of 
front-end electronics to the next layer of read-out. 

In many applications and test systems the data transmitted 
over the data link is moved to a PCI [2] based computer. The 
first Simple S-LINK to PCI interface (SSPCI) [3], designed in 
1997, was intended for a 32-bit/33 MHz PCI bus. Since then 
the PCI has evolved to 64-bit and 66 MHz offering a 
bandwidth of up to 528 Mbytes/s and motherboards with 
several fast and wide PCI segments have become 
commercially available. For such computers the S32PCI64 [4] 
S-LINK to PCI interface has been designed. It is able to move 
data from one plugged-in S-LINK Destination Card (LDC) to 
a host computer. In this interface, the full potential of fast PCI 
(528 Mbytes/s) is not entirely utilised, as the limiting factor is 
the speed of the LDC (160 Mbytes/s).  

For systems with several data inputs running at full 
S-LINK speed, the FILAR [5] interface is envisaged. This 
module, currently under design, will have four S-LINK LDC 
channels integrated with four S32PCI64-like cores within one 
PCI controller. 

II. SSPCI 
  SSPCI was the first S-LINK to PCI interface. Its 

hardware design, based on the AMCC S5933 PCI controller 
[6], was simple but the host computer had to use a complex

 
protocol for the transfer of S-LINK data packets. It required 
many PCI cycles resulting in a typical overhead of 8 µs per 
packet. With a block size of over 10 Kbytes, the overall 
performance reached 117 Mbytes/s. Some ATLAS detectors 
like Muon or TileCal have been using this interface in their 
past and recent test-beam set-ups. 

III. S32PCI64 
In order to decrease the software and protocol overhead 

and to have a better PCI bus utilization, the S32PCI64 
interface has been designed. This commercially available 
module [7] is intended for a 64-bit/66 MHz PCI, which 
potentially allows a throughput that is four times higher than 
that of the SSPCI. The block diagram of the S32PCI64 
interface is shown in Figure 1. 
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Figure 1. Block diagram of the S32PCI64 

 S-LINK and PCI connectors are directly connected to the 
FPGA hosting the firmware of the interface. Firmware 
consists of a 32/64-bit PCI core [8] and local logic. A 
commercially available PCI IP core provides the DMA engine 
and interface to the PCI, while the local logic receives the 
S-LINK data and controls the data movement.  

Thirty-two-bit data words arriving from the S-LINK LDC 
are merged and moved to the Input Buffer FIFO. The depth of 
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this FIFO allows the interface to accommodate up to 8 Kbytes 
of data. When the Input Buffer FIFO is 75% full, it will 
generate a flow control signal to the Link Destination Card so 
that the input buffer will not overflow.  

The host processor can initialize the interface to receive up 
to 15 S-LINK data blocks by writing to the Request FIFO the 
PCI addresses where the data have to be stored and the 
maximum length of each data block to be received. After this, 
the interface can receive data blocks without needing any 
intervention of the processor.  

As address and length parameters appear in the Request 
FIFO, the interface starts moving S-LINK data from the Input 
Buffer FIFO to the PCI Burst FIFO and counts the number of 
words. Only regular data words are moved, while the control 
words are extracted from the data stream and stored in the 
Acknowledge FIFO. 

The depth of the PCI Burst FIFO is a compromise between 
the length of a typical data block in the ATLAS experiment at 
LHC and memory resources available in the FPGA hosting 
the interface logic. The PCI Burst FIFO is 128 words deep 
which allows the interface for bursts of 1kbytes size. This is 
the longest single PCI burst that the interface will perform. 
Data blocks larger than that will be segmented.  

DMA transfers are fully autonomous; the interface becomes 
a Master on the PCI bus when it has received a request and 
data to move. When a current data block is moved entirely to 
the host's memory, a message containing the contents of the 
control words and the actual length of the data block is stored 
in the Acknowledge FIFO. Up to 15 different messages can be 
stored in this FIFO.  

The occupancy of the Request and Acknowledge FIFOs is 
monitored in the status register of the interface and can be 
used to generate an interrupt. Up to six different events can 
prompt the interface to generate an interrupt. 

The return lines and the other signals of the S-LINK 
destination card are set through the control register. 

IV. TEST SET-UP 
Hardware tests were made on an 800 MHz Pentium III PC 

with a SUPER 370DLE motherboard [9] running Linux. A 
SLIDAS board [10] plugged onto the S-LINK connector of 
the S32PCI64 interface generated input data while a VMEtro 
PBT-515BX PCI Bus Analyser [11] plugged into the second 
64-bit/66 MHz PCI slot monitored an activity on the PCI bus. 
A PCI bus exerciser (PCI-Blaster) [12] benchmarked the 
memory and PCI bridge of the PC. 

A. SLIDAS 
The SLIDAS is a manually controlled, stand-alone data 

generator that can be connected to the S-LINK connector. It 
can generate a wide spectrum of data patterns of different 
length, contents and bandwidth.  
 
 

B. PCI-Blaster 
The PCI-Blaster is a module consisting of the S32PCI64 

hardware and a dedicated firmware uploaded into its FPGA. It 
has been designed to sink or source a continuous data stream 
running at full PCI speed in order to test properties of the PC 
it is installed in. PCI-Blaster is fully software programmable 
through its PCI registers. Read and write modes are available 
and can be set-up simultaneously. No external devices are 
needed to run it. In PCI write mode, data of a known pattern is 
generated internally while running in PCI read mode any data 
is accepted. Data transfers can be set-up for a specified 
number of times or for an infinite loop. 

V. MEASUREMENTS 
We measured the sustained throughput of one S32PCI64 

interface and an aggregate sustained throughput of two 
S32PCI64 modules present on the same PCI. Application 
software, written for the test set-up, controlled the data 
transfers on a ‘one-by-one’ basis. This means that for each 
data packet transmitted to the host’s memory a new request 
has been submitted to the Request FIFO of the S32PCI64 
interface. The test program polled the status register and 
didn’t use interrupts. A graph presenting the performance of 
the S32PCI64 interface is shown in Figure 2. One can see that 
the S-LINK bandwidth limits the overall performance of the 
system to 160 Mbytes/s or 320 Mbytes/s in the case of one or 
two S32PCI64 cards present on the PCI bus, respectively. 
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Figure 2. Performance of the S32PCI64 

With the help of a PCI analyser, we measured the latency 
of single read and write instructions and the overhead caused 
by the interface. The overhead is understood as a number of 
PCI clock cycles (wait states) between addressing and data 
cycles of the single PCI instruction.  

We measured also minimal possible period of consecutive 
commands of the same or different type. The asymmetry 
between the results obtained for read and write commands is a 
property of the PC being used for the tests.  

 



The results of these measurements are shown in 
Tables 1 and 2. 

Table 1: Overhead introduced by the S32PCI64  

Type of instruction Overhead 
write 30 ns (2 wait states) 

read 45 ns (3 wait states) 
 

Table 2: Minimal interval between beginning of consecutive PCI 
cycles  

Type of instruction Interval 

write-write 75 ns 

write-read 105 ns 

read-read 330 ns 

read-write 345 ns 
 
For each data block movement the S32PCI64 interface 

needs 5 PCI single transactions: 2 write operations to the 
Request FIFO and 3 read operations from the Acknowledge 
FIFO. The protocol overhead is reduced down to ~2.5 �s with 
respect to the 8 �s of the SSPCI. 

VI. FILAR  
With a theoretical performance limit of 528 Mbytes/s a 

64-bit/66MHz PCI would support up to three S32PCI64 cards, 
each featuring a bandwidth of up to 160 Mbytes/s. As the 
number of this type of PCI slots in a PC is usually limited to 
two, an integration of more input links into one PCI interface 
would be advantageous. The FILAR interface (see Figure 3), 
which is under design, gives the possibility to receive data 
from up to four input links on a single PCI card.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The FILAR module 

Figure 3 presents block diagram of the FILAR module. It 
contains four 2.5 Gbit/s HOLA [13] S-LINK LDC channels 
integrated with four S32PCI64-like cores on a one PCI card. 
Each data channel can be individually enabled/disabled. The 

card will have pluggable fibre optical transceivers, which 
reduces the cost if modules with less than four data channels 
are needed. The temperature of the card can be monitored 
through a PCI register.  

A prototype of the FILAR interface is scheduled for 
Q1/2003. 

A. FILAR Software  
The protocol of the FILAR is similar to that of the 

S32PCI64, with an additional reduction to at most three PCI 
transactions per packet.  The dedicated software package, 
written in the context of the ReadOut Subsystem (ROS) [14], 
consists of a Linux driver and user library. Support for 
multiple FILAR cards and multiple channels in each card is 
provided. As the FILAR code has to coexist with other 
processes, the polling of the Acknowledge FIFO has been 
given up in favour of interrupts. In order to minimise the 
interrupt frequency, once in the interrupt service routine, the 
driver serves all channels including those that have not yet 
reached the interrupt threshold themselves. In combination 
with some other techniques to reduce the software overhead 
we have measured a total overhead (software + PCI single 
cycles) of 1.5 �s per S-LINK packet.  

B. FILAR Emulator 
To prepare the FILAR design and to test new software 

written for it we have built the FILAR emulator. The 
re-usability of existing resources helped as in the case of the 
PCI-Blaster. The FILAR emulator consists of the S32PCI64 
hardware and a newly developed firmware package for the 
FPGA.  

The FILAR emulator takes its data from the S-LINK 
connector and copies it inside the FPGA to the inputs of all 
four data channels. As the board contains only one XOFF line 
for flow control, the XOFF lines coming from the individual 
data channels are logically ORed inside the FPGA. 

The emulator generates an interrupt when 24 or more 
events have been transmitted to the host’s memory by anyone 
of the four data channels.  

C. Performance of the FILAR Emulator  
We measured the sustained throughput of the FILAR 

emulator with one, two, three and four data channels enabled. 
For the measurements we used the same test set-up as for the 
S32PCI64 with the SLIDAS data generator. Triggered by the 
interrupts from the FILAR emulator, the Linux driver read the 
Acknowledge FIFO and re-filled the Request FIFO in all 
working data channels. The test application in turn checked 
the data from the Acknowledge FIFO and provided new data 
to the Request FIFO. The VMEtro PCI analyser was used for 
bus traffic analysis. For randomly recorded full traces of 
65000 PCI cycles a statistical function of VMEtro has been 
used to compute the throughput. Results include all protocol 
and software overheads. A graph showing the performance of 
the FILAR emulator is given in Figure 4.  
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Figure 4. Performance of the FILAR emulator 

We see an improvement in the performance of the FILAR 
emulator with the respect to the S32PCI64 interface for small 
packets. Also the bandwidth for one data channel is better 
than that in the S32PCI64.  

The performance of the FILAR emulator running two, 
three or four data channels is compromised by a limitation of 
the S32PCI64 hardware. A flow control signal working for all 
channels here stops new data to come to the whole interface 
whenever any data buffer in one of the data channels is 
getting full. It thereby prevents other, already empty data 
buffers from being re-filled. This has the consequence that, 
occasionally, the emulator is entirely empty for up to 4.5 �s 
during a DMA. This shortcoming limits the overall 
performance of the FILAR emulator currently to 
320 Mbytes/s but will not exist in the final design where the 
data flow in each channel will be individually controlled.  

We investigate an option that further reduces an impact 
of single PCI cycles on overall bandwidth of the module. If it 
becomes necessary, we will try to replace single PCI accesses 
by DMA. 

VII. CONCLUSIONS 
In this paper we have presented the evolution of the 

S-LINK to PCI interfaces. The development in this area 
followed trends in modern electronics over past years. 
High-density field programmable gate array chips have 
replaced traditional integrated circuits while more intellectual 
property solutions have been used. A smooth transition from 
the S32PCI64 to the FILAR interface has made it possible to 
re-use a great part the software.  

All these factors simplify the design process and improve 
testability and re-usability. Integration of several data 
channels on one board reduces the cost of the final system, 
which is the key issue in modern experiments.  
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