
Evolution of S-LINK to PCI interfaces

Wieslaw Iwanski

Henryk Niewodnicznski Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Krakow, Poland
wieslaw.iwanski@ifj.edu.pl

Markus Joos, Robert McLaren, Jorgen Petersen, Erik van der Bij

CERN, 1211 Geneva 23, Switzerland
markus.joos@cern.ch, robert.andrew.mclaren@cern.ch, jorgen.petersen@cern.ch, erik.van.der.bij@cern.ch

Abstract
The S-LINK is a CERN developed standard that defines a

point-to-point data link. In many applications and test systems
the data transmitted over the link is moved to a PCI based
computer. An overview of the evolution of S-LINK to PCI
interfaces is given. The performance of these interfaces is
presented and a description of the FILAR, a future PCI
interface with four integrated inputs, is given.

I. INTRODUCTION
The S-LINK is a standard that defines interfaces of source

and destination sides of a point-to-point data link featuring a
bandwidth of up to 160 Mbytes/s. A link complying with the
S-LINK specification [1] can be thought of as a virtual cable
that can move data or control words from any layer of
front-end electronics to the next layer of read-out.

In many applications and test systems the data transmitted
over the data link is moved to a PCI [2] based computer. The
first Simple S-LINK to PCI interface (SSPCI) [3], designed in
1997, was intended for a 32-bit/33 MHz PCI bus. Since then
the PCI has evolved to 64-bit and 66 MHz offering a
bandwidth of up to 528 Mbytes/s and motherboards with
several fast and wide PCI segments have become
commercially available. For such computers the S32PCI64 [4]
S-LINK to PCI interface has been designed. It is able to move
data from one plugged-in S-LINK Destination Card (LDC) to
a host computer. In this interface, the full potential of fast PCI
(528 Mbytes/s) is not entirely utilised, as the limiting factor is
the speed of the LDC (160 Mbytes/s).

For systems with several data inputs running at full
S-LINK speed, the FILAR [5] interface is envisaged. This
module, currently under design, will have four S-LINK LDC
channels integrated with four S32PCI64-like cores within one
PCI controller.

II. SSPCI
 SSPCI was the first S-LINK to PCI interface. Its

hardware design, based on the AMCC S5933 PCI controller
[6], was simple but the host computer had to use a complex

protocol for the transfer of S-LINK data packets. It required
many PCI cycles resulting in a typical overhead of 8 µs per
packet. With a block size of over 10 Kbytes, the overall
performance reached 117 Mbytes/s. Some ATLAS detectors
like Muon or TileCal have been using this interface in their
past and recent test-beam set-ups.

III. S32PCI64
In order to decrease the software and protocol overhead

and to have a better PCI bus utilization, the S32PCI64
interface has been designed. This commercially available
module [7] is intended for a 64-bit/66 MHz PCI, which
potentially allows a throughput that is four times higher than
that of the SSPCI. The block diagram of the S32PCI64
interface is shown in Figure 1.

S
L
I
N
K

S
L
I
N
K

3
to
64

32
to
64

Map

INPUT
BUFFER

FIFO
(1024 x 64-bit

INPUT
BUFFER

FIFO
(1024 x 64-bit)

BACKEND
CONTROL

LOGIC

BACKEND
CONTROL

LOGIC

PCI
BURST
FIFO

128x
64-bit

PCI
BURST
FIFO

128x
64-bit

REQUEST
FIFO

(address, length)

REQUEST
FIFO

 (address, length)

ACKNOWLEDGE
FIFO

ACKNOWLEDGE
FIFO

(ctrl words, length)

CONTRO
STATUS &

INTERRUPT

CONTROL
STATUS
INTERRUPT
REGISTERS

64-BI

PCI

CORE

64-BIT

PCI

CORE

DMA
ENGINE

33 MHz
32/64-bi

PC

33/66 MHz
32/64-bit

PCI

Local logic Commercial IP Core FPGA

Figure 1. Block diagram of the S32PCI64

 S-LINK and PCI connectors are directly connected to the
FPGA hosting the firmware of the interface. Firmware
consists of a 32/64-bit PCI core [8] and local logic. A
commercially available PCI IP core provides the DMA engine
and interface to the PCI, while the local logic receives the
S-LINK data and controls the data movement.

Thirty-two-bit data words arriving from the S-LINK LDC
are merged and moved to the Input Buffer FIFO. The depth of

2

)

L,

T t
I

mailto:wieslaw.iwanski@ifj.edu.pl
mailto:markus.joos@cern.ch
mailto:robert.andrew.mclaren@cern.ch
mailto:jorgen.petersen@cern.ch
mailto:erik.van.der.bij@cern.ch

this FIFO allows the interface to accommodate up to 8 Kbytes
of data. When the Input Buffer FIFO is 75% full, it will
generate a flow control signal to the Link Destination Card so
that the input buffer will not overflow.

The host processor can initialize the interface to receive up
to 15 S-LINK data blocks by writing to the Request FIFO the
PCI addresses where the data have to be stored and the
maximum length of each data block to be received. After this,
the interface can receive data blocks without needing any
intervention of the processor.

As address and length parameters appear in the Request
FIFO, the interface starts moving S-LINK data from the Input
Buffer FIFO to the PCI Burst FIFO and counts the number of
words. Only regular data words are moved, while the control
words are extracted from the data stream and stored in the
Acknowledge FIFO.

The depth of the PCI Burst FIFO is a compromise between
the length of a typical data block in the ATLAS experiment at
LHC and memory resources available in the FPGA hosting
the interface logic. The PCI Burst FIFO is 128 words deep
which allows the interface for bursts of 1kbytes size. This is
the longest single PCI burst that the interface will perform.
Data blocks larger than that will be segmented.

DMA transfers are fully autonomous; the interface becomes
a Master on the PCI bus when it has received a request and
data to move. When a current data block is moved entirely to
the host's memory, a message containing the contents of the
control words and the actual length of the data block is stored
in the Acknowledge FIFO. Up to 15 different messages can be
stored in this FIFO.

The occupancy of the Request and Acknowledge FIFOs is
monitored in the status register of the interface and can be
used to generate an interrupt. Up to six different events can
prompt the interface to generate an interrupt.

The return lines and the other signals of the S-LINK
destination card are set through the control register.

IV. TEST SET-UP
Hardware tests were made on an 800 MHz Pentium III PC

with a SUPER 370DLE motherboard [9] running Linux. A
SLIDAS board [10] plugged onto the S-LINK connector of
the S32PCI64 interface generated input data while a VMEtro
PBT-515BX PCI Bus Analyser [11] plugged into the second
64-bit/66 MHz PCI slot monitored an activity on the PCI bus.
A PCI bus exerciser (PCI-Blaster) [12] benchmarked the
memory and PCI bridge of the PC.

A. SLIDAS
The SLIDAS is a manually controlled, stand-alone data

generator that can be connected to the S-LINK connector. It
can generate a wide spectrum of data patterns of different
length, contents and bandwidth.

B. PCI-Blaster
The PCI-Blaster is a module consisting of the S32PCI64

hardware and a dedicated firmware uploaded into its FPGA. It
has been designed to sink or source a continuous data stream
running at full PCI speed in order to test properties of the PC
it is installed in. PCI-Blaster is fully software programmable
through its PCI registers. Read and write modes are available
and can be set-up simultaneously. No external devices are
needed to run it. In PCI write mode, data of a known pattern is
generated internally while running in PCI read mode any data
is accepted. Data transfers can be set-up for a specified
number of times or for an infinite loop.

V. MEASUREMENTS
We measured the sustained throughput of one S32PCI64

interface and an aggregate sustained throughput of two
S32PCI64 modules present on the same PCI. Application
software, written for the test set-up, controlled the data
transfers on a ‘one-by-one’ basis. This means that for each
data packet transmitted to the host’s memory a new request
has been submitted to the Request FIFO of the S32PCI64
interface. The test program polled the status register and
didn’t use interrupts. A graph presenting the performance of
the S32PCI64 interface is shown in Figure 2. One can see that
the S-LINK bandwidth limits the overall performance of the
system to 160 Mbytes/s or 320 Mbytes/s in the case of one or
two S32PCI64 cards present on the PCI bus, respectively.

S32PCI64 throughput

0
50

100
150
200
250
300
350

0 1000 2000 3000 4000 5000

Event Size [Bytes]

M
B

yt
es

 /
s

One s32pci64
Two s32pci64

Figure 2. Performance of the S32PCI64

With the help of a PCI analyser, we measured the latency
of single read and write instructions and the overhead caused
by the interface. The overhead is understood as a number of
PCI clock cycles (wait states) between addressing and data
cycles of the single PCI instruction.

We measured also minimal possible period of consecutive
commands of the same or different type. The asymmetry
between the results obtained for read and write commands is a
property of the PC being used for the tests.

The results of these measurements are shown in
Tables 1 and 2.

Table 1: Overhead introduced by the S32PCI64

Type of instruction Overhead
write 30 ns (2 wait states)

read 45 ns (3 wait states)

Table 2: Minimal interval between beginning of consecutive PCI
cycles

Type of instruction Interval

write-write 75 ns

write-read 105 ns

read-read 330 ns

read-write 345 ns

For each data block movement the S32PCI64 interface

needs 5 PCI single transactions: 2 write operations to the
Request FIFO and 3 read operations from the Acknowledge
FIFO. The protocol overhead is reduced down to ~2.5 �s with
respect to the 8 �s of the SSPCI.

VI. FILAR
With a theoretical performance limit of 528 Mbytes/s a

64-bit/66MHz PCI would support up to three S32PCI64 cards,
each featuring a bandwidth of up to 160 Mbytes/s. As the
number of this type of PCI slots in a PC is usually limited to
two, an integration of more input links into one PCI interface
would be advantageous. The FILAR interface (see Figure 3),
which is under design, gives the possibility to receive data
from up to four input links on a single PCI card.

Figure 3. The FILAR module

Figure 3 presents block diagram of the FILAR module. It
contains four 2.5 Gbit/s HOLA [13] S-LINK LDC channels
integrated with four S32PCI64-like cores on a one PCI card.
Each data channel can be individually enabled/disabled. The

card will have pluggable fibre optical transceivers, which
reduces the cost if modules with less than four data channels
are needed. The temperature of the card can be monitored
through a PCI register.

A prototype of the FILAR interface is scheduled for
Q1/2003.

A. FILAR Software
The protocol of the FILAR is similar to that of the

S32PCI64, with an additional reduction to at most three PCI
transactions per packet. The dedicated software package,
written in the context of the ReadOut Subsystem (ROS) [14],
consists of a Linux driver and user library. Support for
multiple FILAR cards and multiple channels in each card is
provided. As the FILAR code has to coexist with other
processes, the polling of the Acknowledge FIFO has been
given up in favour of interrupts. In order to minimise the
interrupt frequency, once in the interrupt service routine, the
driver serves all channels including those that have not yet
reached the interrupt threshold themselves. In combination
with some other techniques to reduce the software overhead
we have measured a total overhead (software + PCI single
cycles) of 1.5 �s per S-LINK packet.

B. FILAR Emulator
To prepare the FILAR design and to test new software

written for it we have built the FILAR emulator. The
re-usability of existing resources helped as in the case of the
PCI-Blaster. The FILAR emulator consists of the S32PCI64
hardware and a newly developed firmware package for the
FPGA.

The FILAR emulator takes its data from the S-LINK
connector and copies it inside the FPGA to the inputs of all
four data channels. As the board contains only one XOFF line
for flow control, the XOFF lines coming from the individual
data channels are logically ORed inside the FPGA.

The emulator generates an interrupt when 24 or more
events have been transmitted to the host’s memory by anyone
of the four data channels.

C. Performance of the FILAR Emulator
We measured the sustained throughput of the FILAR

emulator with one, two, three and four data channels enabled.
For the measurements we used the same test set-up as for the
S32PCI64 with the SLIDAS data generator. Triggered by the
interrupts from the FILAR emulator, the Linux driver read the
Acknowledge FIFO and re-filled the Request FIFO in all
working data channels. The test application in turn checked
the data from the Acknowledge FIFO and provided new data
to the Request FIFO. The VMEtro PCI analyser was used for
bus traffic analysis. For randomly recorded full traces of
65000 PCI cycles a statistical function of VMEtro has been
used to compute the throughput. Results include all protocol
and software overheads. A graph showing the performance of
the FILAR emulator is given in Figure 4.

FPGA
 S32PCI6

S32PCI6

S32PCI6

S32PCI6

LDC
protocol

LDC
protocol

LDC
protocol

LDC
protocol

ser
des

pluggable
transceiver

ser
des pluggable

transceiver

pluggable
transceiver

ser
des

pluggable
transceiver des

ser

Figure 4. Performance of the FILAR emulator

We see an improvement in the performance of the FILAR
emulator with the respect to the S32PCI64 interface for small
packets. Also the bandwidth for one data channel is better
than that in the S32PCI64.

The performance of the FILAR emulator running two,
three or four data channels is compromised by a limitation of
the S32PCI64 hardware. A flow control signal working for all
channels here stops new data to come to the whole interface
whenever any data buffer in one of the data channels is
getting full. It thereby prevents other, already empty data
buffers from being re-filled. This has the consequence that,
occasionally, the emulator is entirely empty for up to 4.5 �s
during a DMA. This shortcoming limits the overall
performance of the FILAR emulator currently to
320 Mbytes/s but will not exist in the final design where the
data flow in each channel will be individually controlled.

We investigate an option that further reduces an impact
of single PCI cycles on overall bandwidth of the module. If it
becomes necessary, we will try to replace single PCI accesses
by DMA.

VII. CONCLUSIONS
In this paper we have presented the evolution of the

S-LINK to PCI interfaces. The development in this area
followed trends in modern electronics over past years.
High-density field programmable gate array chips have
replaced traditional integrated circuits while more intellectual
property solutions have been used. A smooth transition from
the S32PCI64 to the FILAR interface has made it possible to
re-use a great part the software.

All these factors simplify the design process and improve
testability and re-usability. Integration of several data
channels on one board reduces the cost of the final system,
which is the key issue in modern experiments.

VIII. ACKNOWLEDGMENTS
FILAR emulator throughput

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

Event Size [Bytes]

M
B

yt
es

 /
s

1 channel
2 channels
3 channels
4 channels

The work was supported in part by the Polish State
Committee for Research under Grant No.
620/E-77/SPUB-M/CERN/P-03/DZ 295/2000-2002.

This work was performed within the framework of the
ATLAS Trigger and Data Acquisition project and we
gratefully acknowledge the contributions of other members of
the T/DAQ group.

IX. REFERENCES

[1] http://www.cern.ch/HSI/s-link
[2] PCI local bus specification, Revision 2.1, June 1, 1995
[3] http://hsi.web.cern.ch/HSI/s-link/devices/slink-pmc/
[4] http://hsi.web.cern.ch/HSI/s-link/devices/s32pci64/
[5] http://edms.cern.ch/document/337904/1
[6] http://www.amcc.com
[7] http://www.no-el.krakow.pl/products.html
[8] http://www.plda.com
[9] http://www.supermicro.com
[10] http://hsi.web.cern.ch/HSI/s-link/devices/slidas
[11] http://www.vmetro.com
[12] http://edms.cern.ch/document/338516/1
[13] http://hsi.web.cern.ch/HSI/s-link/devices/hola/
[14] http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/ros.htm

http://www.cern.ch/HSI/s-link
http://hsi.web.cern.ch/HSI/s-link/devices/slink-pmc/
http://hsi.web.cern.ch/HSI/s-link/devices/s32pci64/
http://edms.cern.ch/document/337904/1
http://www.amcc.com/
http://www.no-el.krakow.pl/products.html
http://www.plda.com/
http://www.supermicro.com/
http://hsi.web.cern.ch/HSI/s-link/devices/slidas
http://www.vmetro.com/
http://edms.cern.ch/document/338516/1
http://hsi.web.cern.ch/HSI/s-link/devices/hola/
http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/ros.htm

	Evolution of S-LINK to PCI interfaces

