<u>The Readout System of the</u> <u>ATLAS Liquid Argon Calorimeters</u>

I mma Riu University of Geneva on behalf of the LARG ROD group

8th Workshop on Electronics for LHC Experiments COLMAR, France

10 September 2002

Outline:

- Introduction
- Readout requirements
- The LArgon Readout architecture
- ROD system description
- DSP test results
- Status and plans
- Summary

Introduction

- The ATLAS detector
- The ATLAS Calorimetry
- The Liquid Argon Readout

The ATLAS detector

ATLAS: A Toroidal LHC ApparatuS

The ATLAS calorimetry

- The ATLAS Liquid Argon calorimeter is divided into:
 - Barrel calorimeter (EMB)
 - Electromagnetic endcaps (EMEC)
 - Hadronic endcaps (HEC)
 - Forward calorimeter (FCAL)
- In total, around 190 000 channels are to be read out.

The challenging LArgon Readout

- Large dynamic energy range: [50 MeV 3TeV] -----> 16 bits !
- The bunch crossing (BX) rate at LHC is 40 MHz (each 25 ns): For a signal of 600 ns, the pile-up takes up to 24 BXs.

Pile-up and electronic noise should be minimized.

Required relative energy resolution: ~ 10% / \sqrt{E} : \bullet

Good calibration of the electronics response. Signal after shaping Amplitude 1 Different 0.80.6 0.4

0.2

-0.2

 \overline{t}_{p}

100

BXs

Imma Riu

300

400

200

The Readout System of the **ATLAS Liquid Argon Calorimeters**

600

500

Time (ns)

The functionality and requirements of the Readout electronics

Functionality and requirements

• Functionality:

- Derive the precise energy and arrival time of calorimeter signals from discrete samplings of the pulse.
- Perform monitoring and format the digital stream for the DAQ system.
- Generate a 'busy' signal in case the trigger rate is too high.
- Requirements:
 - High channel density.
 - Modular design: basic components should be easily changed/upgraded.
 - Event processing time including monitoring and histogramming tasks \leq 10 μ s.
 - Low power consumption.

A collaboration among:

- Academia Sinica, Taiwan
- LAL Orsay
- LAPP Annecy
- LPNHE Université Paris VI
- MPI Munich
- Nevis Laboratories
- Southern Methodist University
- University of Geneva

The Liquid Argon Readout Architecture

The LArgon readout architecture (I)

The LArgon readout architecture (II)

ATLAS Liquid Argon Calorimeters

FEB and ROD boards functionality

- Radiation tolerant board.
- 128 channels / FEB.
- Fast signal shaping (~ 50 ns).
- Five digitized points using three gains in the ratio 1/10/100.
- Gain selection.
- LArgon needs ~1600 FEBs.

- Computes time, energy and shape quality flag (χ 2) in \leq 10 μ s.
- Use of optimal filtering algorithm.
- Use of Digital Signal Processors (DSP).
- Generates the 'busy' signal.
- LArgon needs ~200 RODs.

Optimal filtering algorithm

- The technique is an error minimization of E and $E \cdot t$.
- Computation of signal arrival time and energy from a set of measurements (5) using some constraints.

$$E = \sum_{i=1}^{5} a_i \cdot (S_i - Ped)$$
$$E \cdot t = \sum_{i=1}^{5} b_i \cdot (S_i - Ped)$$
$$a_i, b_i : \text{weights}$$

ROD system description

- Input: 8 optical fibers with FEB raw data (16 bits @ 80 MHz)
- **Output:** 4 optical fibers with ROD calculations (32 bits @ 40 MHz)
- Modules:
 - 9U VME64x board: ROD module (14 RODs / crate at maximum)
 - 9U VME64x board: Transition Module (TM)
 - Custom-made back plane called P3 (for TTC and busy signals)

ROD physical description

- ROD module:
 - ROD Mother Board (MB):
 - I mplements the VME interface, the TTC and deals with the busy signal.Routes the input data to the PU boards .
 - Routes the PUs output data to the TM after serialization.
 - 4 Processing Unit (PU) boards mounted on top of the ROD MB:
 Perform the optimal filtering algorithm calculations.
- Transition module:
 - Transition Module board (TM):
 - De-serializes the ROD output data.
 - Sends to the ROD the Link Down and Link Full signals from the DAQ.
 - 4 S-link interface cards mounted on top of the TM: Send the ROD output to the DAQ.

ROD module scheme

Processing Unit Board scheme

- Input FPGA:
 - FEB data serial to parallel conversion.
 - Data rearrangement.
 - Error checking.
- Output FPGA:
 - VME and TTC interface to the DSP.

- Digital Signal Processor (DSP):
 - Perform the optimal filtering algorithm calculations.
- FIFO:
 - Contains the DSP output data to be read by the MB.

Transition Module board scheme

- Requirements:
 - Data bandwidth should be 1.28 Gbit/s.
- The information coming back from the DAQ is:
 - Link down (LD)
 - Link full flag (LFF)
- FIFO:
 - Used for stocking data when LD or LFF come.
- DeSer (de-serializer):
 - De-serialize the data from the ROD module.

Data path in the ROD

ROD requirements

- High channel density.
- Modular design: basic components should be easily changed/upgraded.
- Event processing time including histogramming tasks \leq 10 μ s.
- Low power consumption.

Boards comparison

ROD demonstrator

(the past)

- Built in 2000.
- Board frequency: 40 MHz.
- 2 optical receivers as mezzanine in TM.
- 1 Output Slink in the Transition Module.
- 4 PUs: 1 DSP/PU, 64 channels/DSP.
- Used in Test Beams and for tests of PU.

ROD prototype

(the future)

- To be built in 2002.
- Parts of the board at 80 MHz.
- 8 optical links integrated in the ROD.
- 4 Slink Outputs in the TM.
- 4 PUs: 2 DSP/PU, 128 channels/DSP.

- Sending of data serialized in LVDS at 280 MHz to the TM.
- Addition of the staging FPGAs.
- Use of BGA chips.

Tests with the DSP

- Two PU boards provided with two different DSPs were tested:
 - Texas Instruments DSP 6203
 - Texas Instruments DSP 6414

DSP characteristics

- TI 6203:
 - 300 MHz; 3.33 ns core cycle
 - Fixed-point arithmetic
 - Based on VelociTI[™], an advanced Very Long Instruction Word (VLIW) architecture.
 - Eight 32-bit instructions/cycle
 - 875 kbytes internal memory:
 - 375 kbytes Program RAM
 - 500 kbytes Data RAM
 - 32-bit External Memory Interface (EMIF)
 - 4 DMA channels
 - 384-pin BGA package
 - 3.3V I/O, 1.5V core

- TI 6414:
 - 600 MHz; 1.67 ns core cycle
 - Fixed-point arithmetic
 - Based on VelociTI.2[™] VLIW architecture:
 - Include special purpose instructions to accelerate performance in key applications like imaging. For example, support for packed data processing.
 - Eight 32-bit instructions/cycle
 - L1/L2 Memory Architecture:
 - 16 kbytes L1 Program Cache (L1P)
 - 16 kbytes L1 Data Cache (L1D)
 - 1 Mbyte L2 RAM/Cache
 - Two EMIF: 64-bit and 16-bit
 - 64 EDMA channels
 - 532-pin BGA package
 - 3.3V I/O, 1.4V core

DSP time measurement

- Comparison of measured DSP processing time:
 - 128 channels per event.
 - Optimal filtering code computing E,t and χ^2 .
 - Histogramming of channels having E> E_T (1.9 ADC counts)
 - Code optimized for each DSP.

Average DSP processing time versus

Conclusion: Both fulfill the condition $t < 10 \ \mu s$.

The DSP 6414 is faster than the DSP 6203.

It is not twice as fast as it would be expected.

ROD requirements

- High channel density.
- Modular design: basic components should be easily changed/upgraded.
- Event processing time including histogramming tasks \leq 10 µs.
- Low power consumption.

DSP memory organization

- Memory contents in the DSP of the PU:
 - Input data and output data
 - Optimal algorithm weights
 - Histogram contents
- Good organization of the memory is needed:

The weights (heavily used) need to be always in the L1D cache of DSP 6414.

Histogramming in DSP 6414

ROD requirements

- High channel density.
- Modular design: basic components should be easily changed/upgraded.
- Event processing time including histogramming tasks \leq 10 μ s.
- Low power consumption. Estimated to be ~80 W per ROD

Status and plans

Status and plans

- Decision of the DSP chip:
- ROD preliminary design review:
- Prototype production:
- Pre-series production:
- PRR (Production Readiness Review) :
- Series production:

Done (DSP TI 6414) September 2002 Nov/Dec 2002 June 2003 Oct/Nov 2003 January 2004

Delicate points of the ROD

- Cooling of G-link chips:
 - 35 °C at maximum for 80 MHz clock frequency.
 - Cooling with water or air are being studied.
- Staging mode:
 - Half of the PUs will be used at the beginning of LHC.
 - The DSP processes 128*2 channels.
- The ROD output goes through serializer/de-serializer at 280 MHz.
- The DSP power consumption:
 - Histogramming impacts the power consumption, as it accesses memory which is not mapped in the cache.
 - The DSP does not like the change of data read/data write. This causes dirty lines and higher power consumption.

Summary

- The ROD project is ongoing well.
- The DSP 6414 has been chosen recently. It needs careful memory treatment.
- The first prototypes of the ROD, the TM and the P3 back plane are expected by the end of 2002.
- The ROD mass production is expected to be finished in 2004.