

The CMS HCAL Data Concentrator: A Modular, Standards-based Design

A Review of the CMS HCAL DAQ

Gueorgui Antchev, <u>Eric Hazen</u>, Jim Rohlf, Shouxiang Wu *Boston University* Drew Baden, Rob Bard, Rich Baum, Hans Breden, John Giganti, Tullio Grassi, Aaron McQueen, Jack Touart *University of Maryland* Mark Adams, Kyle Burchesky, Weiming Qian *University of Illinois, Chicago* Wade Fisher, Jeremy Mans, Chris Tully *Princeton University* J. Elias, T. Shaw, J. Whitmore... *Fermi National Laboratory*

- HCAL Trigger DAQ Overview
 - Requirements
 - Overview Diagram
 - DAQ Crate
- HCAL Trigger Readout Card (HRC)
 - Requirements
 - Block Diagram
 - Photo
- HCAL Data Concentrator (DCC)
 - Motherboard
 - Link Receiver
 - Logic Board
- HCAL Readout Controller (HRC)
- Data Format
- System Tests
- Summary

- Digitize scintillator pulses every BX
 - Pulses occupy ~3 BX periods (25ns each)
 - Dynamic range required is about 10⁴ (14-15 bits)
 - QIE (custom floating point ADC) used
- Reliably assign energy measurement to a single BX for Level 1
 - F.I.R. filter implemented in FPGA (ala FERMI)
 - Synchronized across HCAL+ECAL for input to Level 1
- Transmit data to DAQ on L1A
 - Zero Supression
 - Formatting

Readout Box (RBX)

HCAL FE/DAQ Overview

DAQ Crate (in UXA)

13 September 2001

HCAL Channel Counts

Region	Towers	GOL Fibers	Trigger Towers	Crates
Barrel	2,160	720	2,160	6
Outer	2,160	720	0	6
Endcap	2,160	720	1,728	2
Forward	2,016	672	144	6
Overlap	864	288	144	6
Total	9,360	3,120	4,176	26

HCAL DAQ Crate

- 9U x 400 VME64x Crate
- Controller (HRC)
 - Commercial CPU/Bridge
 - TTC Fanout
- Readout Cards (HTR)
 - Front-end data in (GOL)
 - Level 1 Out (Vitesse Cu)
 - Level 2 Out (LVDS)

• Data Concentrator (DCC)

- Level 2 in (LVDS) x 18
- S-Link Out x 2

- Level 1 (Trigger) Path
 - Energy Sum and Bunch Crossing Determination
 - Output Trigger Primitives to Level 1 synch'd to BX
- Level 2 (DAQ) Path
 - Zero-supress Level 2 data (energy filter)
 - Package raw data plus trigger primitives
 - Send to Data Concentrator every L1A
- Implementation
 - FIR filter for bunch crossing (ala FERMI)
 - Single large FPGA for core logic

HCAL Trigger Readout Card

HCAL DCC Prototype Architecture

PC-MIP Mezzanine Cards

3 Channel Link Receivers

13 September 2001

HCAL DCC Motherboard

HCAL DCC Motherboard

13 September 2001

PC-MIP 3 Channel Link Receiver

- 3 "Channel Link" LVDS receivers
- PCI target interface
- On-board logic:
 - ECC (Hamming) plus parity
 - Correct 1-bit, detect multi-bit errors
 - On-the-fly Event Building
 - Event number checking
 - Overflow warning (discard data payload on overflow)
 - Missing header/trailer detection & repair
 - Monitoring:
 - Count of words, events, errors
 - Status update on "marked" event for synchronization of monitoring
 - Status: 20 second-generation prototypes build (design is done)

13 September 2001

DCC Prototype Logic Board

JTAG

- Features:
 - On-board TTCrx controls operation
 - 3 Altera FPGAs for PCI interfaces (use Altera PCI-MT/32 core)
 - Xilinx Virtex-2 contains all other logic:
 - Event Builder
 - Monitoring
 - Buffering (DDR SDRAM interface at 800Mbytes/s)
 - S-Link output (32 in demo; 64 final)
 - On-board flash memory for FPGA initialization
 - JTAG Interface
- Status:
 - Prototype PCB Working
 - Continuous DAQ transfer at 80MB/s demonstrated (one PCI bus only)
 - 2nd Prototype layout done

HCAL Readout Controller (HRC)

- Run Control
 - Initialization, shutdown
 - "Slow" monitoring via VME
 - Error recovery:
 - Monitor status registers of modules via VME
 - Report serious errors via DCS
 - Reset/Restart on command
- TTC Fanout
 - Fanout encoded TTC to all modules
 - Fanout Locally Decoded CLK, BC0 to HTR modules
 - I²C Control of local TTCrx

HCAL DAQ Data Format

- Data format follows TriDAS
 Guidelines → → →
- HCAL payload: (details t.b.d)
 - Raw QIE (ADC) samples
 - Level 2 Filter output
 - Trigger Primitives
 - Zero-suppression mask
 - Error summary:
 - Front-end errors
 - Uncorrected Link errors
 - Synchronization errors
- We will stay tuned for updates to the data format → → →

63 5	6 55		32	31 20	19	43 0	
K BOE_1		LV1_id		BX_id	PARAM	\$\$\$\$	
63 5	6 55 48	47 40	39 32	31	1615	43 0	
K BOE_2	LV1_ty	Evt_ty	FOV	Source_id	XXXXXXXX	xxxx	
63 5	6 55 48	47	32	31	1615	<u>43</u> 0	
K BOE_3	XXXXXXXX	ORB_id	(optional)	ORB_id (option	onal) <mark>xxxxxxxx</mark>	<mark>xxxx</mark>	
63 56	55		32	31		43	
K BOE_4	XXXXXXXX	xxxxxxx	XXXXXXXX	Header_	integrity_code	<mark>\$\$\$\$</mark>	
63 0							
D Sub-detector payload							
D Sub-detector payload							
63 56	55 48	47	32	31		430	
K EOE_1	XXXXXXXX	Evt_	stat	XXXXXXXXXXXX	XXXXXXXXXXXXX	(XXX <mark>\$\$\$\$</mark>	
63 56	55 48	47	32	31	16 15	43 0	
K EOE 2	XXXXXXXX	Evt	løth	Integrity co	de xxxxxxxx	xxx \$\$\$\$	

- Radioactive Source Calibration Test
 - NOW at Fermilab
 - Record data at 80Mbyte/s for detector calibration
 - Uses demonstrator hardware for all system components and verifies basic functionality

• Test Beam – Summer '02 at CERN

- Record data at realistic LHC rates
- A few hundred channels
- Uses (2nd) prototype hardware for all components
- Verify high-rate operation under realistic conditions

(CI	M	S,	/
		4	2	2
	-		P	1

Summary

- Front-End:
 - RBX Mechanics/Cooling Designed+Prototyped
 - Readout Card prototypes under test
- HTR:
 - 6U Demonstrator prototypes working
 - New prototype with GOL under design
- DCC:
 - 9U Demonstrator prototypes working
 - No major changes anticipated for production version (significant FPGA coding remains)
- HRC:
 - Use commercial CPU for now
 - TTC Fanout Design Done (U.I.C.)
- Major Concerns:
 - QIE Performance (pending prototype tests now underway)
 - Performance of 1.6 Gbit GOL link
 - HTR/DCC FPGA Design Quite complex

HCAL RBX

HTR Demonstrator

DCC Demonstrator

Backup Slides

13 September 2001

HCAL DAQ Buffering

LEB - Stockholm - 2001 - E. Hazen

27

HCAL Timing / L1A Distribution

- Fast Controls (via TTC):
 - L1A, Start Run, Stop Run
 - Reset (complete and partial need to define!)
- Fast Monitoring (dedicated signals to TTS)
 - Overflow Warning (buffer full above preset limit)
 - Busy/Ready (reset, start/stop completed)
- Slow Monitoring (link errors, loss of sync, etc)
 - Counters in FPGAs collect information in real time
 - Reported via CPU

- ? Lookup table (LUT)
 - ? Convert to 16 bit linear energy
- ? Pipeline (? Level 1 Path?)
 - ? Transmit to Level 1 trigger, buffer for Level 1 Accept, 3 µs latency
- ? Level 2 Buffer (? Level 2 Path?)
 - ? Asynchronous buffer, sized based on physics requirements

PCI Development

- PC-MIP Cards
 - Use adapter in standard PC motherboard
 - LRB Prototype was completely developed before motherboard
- VME Motherboard
 - Test all sites with standard PC-MIP and PMC cards
- Integration
 - Integration of motherboard and mezzanine cards was quite smooth
- PCI Interface logic
 - Use Altera Core (motherboard and logic boards)
 - Own design simple slave for LRB

Flash ADC Quantization

13 September 2001

LEB - Stockholm - 2001 - E. Hazen

32