
Vertical Slice of the ATLAS Detector Control System

H.Boterenbrood1, H.J. Burckhart2, J.Cook2, V. Filimonov3, B. Hallgren2, F.Varela2a

1NIKHEF, Amsterdam, The Netherlands, 2CERN, Geneva, Switzerland, 3PNPI, St.Petersburg, Russia,
aalso University of Santiago de Compostela, Spain

Abstract
The ATLAS Detector Control System consists of two

main components: a distributed supervisor system, running on
PCs, called Back-End system, and the different Front-End
systems. For the former the commercial Supervisory Control
And Data Acquisition system PVSS-II has been selected. As
one solution for the latter, a general purpose I/O concentrator
called Embedded Local Monitor Board has been developed.
This paper describes a full vertical slice of the detector control
system, including the interplay between the Embedded Local
Monitor Board and PVSS-II. Examples of typical control
applications will be given as well.

I. SCOPE OF DCS

The ATLAS Detector Control System (DCS) [1] must
enable a coherent and safe operation of the ATLAS detector.
It has also to provide interaction with the LHC accelerator and
the external services such as cooling, ventilation, electricity
distribution, and safety systems. Although the DCS will
operate independently from the DAQ system, efficient bi-
directional communication between both systems must be
ensured. ATLAS consists of several subdetectors, which are
operationally quite independent. DCS must be able to operate
them in both stand-alone mode and in an integrated fashion as
a homogenous experiment.

DCS is not responsible for safety, neither for personal nor
for equipment. It also does not deal with the data of the
physics events.

II. ARCHITECTURE OF DCS
The ATLAS detector is hierarchically organised, starting

with the subdetectors (e.g. Transition Radiation Tracker, Tile
Calorimeter, etc.), and on the further levels down following
their respective subsystems (e.g. barrel and end-cap parts or
High Voltage, Low Voltage, gas systems, etc.). This
organisation has to be accommodated in the DCS architecture.
The DCS equipment is geographically distributed in three
different areas as shown in figure 1. The main control room is
situated at the surface, in SCX1 and houses the supervisory
stations for the operation of the detector. This equipment is
connected via a LAN to the Local Control Stations (LCS)
placed in the underground electronics room USA15, which is
accessible during running of the experiment. The Front-End
(FE) electronics in UX15 is exposed to radiation and a strong

magnetic field. This equipment is distributed over the whole
volume of the detector with cable distances up to 200 m. The
communication with the equipment in USA15 is done via
fieldbuses.

Figure 1: Architecture of ATLAS DCS

A. Back-End System
The highest level is the overall supervision as performed

from the control room by the operator. Apart from the Human
Interface it includes analysis and archiving of monitor data,
‘automatic’ execution of pre-defined procedures and
corrective actions, and exchange of data with systems outside
of DCS. The middle level consists of LCSs, which operate a
sub-detector or a part of it quite independently. These two
levels form the Back-End (BE) system. The commercial
Supervisory Control And Data Acquisition (SCADA) package
PVSS-II [2] has been chosen, in the framework of the Joint
COntrols Project (JCOP) [3] at CERN, to implement the BE
systems of the 4 LHC experiments. PVSS-II gathers
information from the FE equipment and offers supervisory
control functions such as data processing, execution of control
procedures, alert handling, trending, archiving and web
interface. It has a modular architecture based on functional
units called managers, which perform these individual tasks.
PVSS-II is a device-oriented product where devices are
modelled by structures called data-points. Applications can be
distributed over many stations on the network running on both
Linux and WNT/2000. These features of modelling and
distribution facilitate the mapping of the control system onto
the different subdetectors. Due to the large number of
channels to be handled in ATLAS, the event-driven
architecture of the product was a crucial criterion during the

selection process. PVSS-II also provides a wide set of
standards to interface hardware (OPC, fieldbus drivers) and
software (ODBC, DDE, DLL, API).

B. Front-End System
The responsibility for the FE systems is with the sub-

detector groups. In order to minimise development effort and
to ease maintenance load, a general purpose I/O system,
called Embedded Local Monitor Board (ELMB) has been
developed, which is described in detail in another contribution
to this workshop [4]. It comprises ADC and digital I/O
functions, is radiation tolerant for use outside of the
calorimeters of the LHC detectors and can operate in a strong
magnetic field. Further functions such as DAC and interlock
capability can be added. The readout is done via the fieldbus
CAN [5], which is an industry standard with well-supported
commercial hardware down to the chip level. Due to its very
performent error detection and correction and its flexibility,
CAN is particularly suited for distributed I/O as needed by the
LHC detectors. CANopen is used as high-level
communication protocol on the top of the physical and data
link layers defined by CAN. It comprises features such as
network management and supervision, a wide range of
communication objects for different purposes (e.g. real-time
data transfer, configuration) and special functions for network
synchronisation, time stamping, error handling, etc.

C. Connection FE-BE
The interface PVSS-CANopen is based on the industry

standard OPC (OLE for Process Control) [6]. OPC is a
middle-ware based on the Microsoft DCOM (Distributed
Compound Object Model) which comprises a set of interfaces
designed to facilitate the integration of control equipment into
Windows applications. OPC is supported by practically all
SCADA products. This standard implements a multi-
client/multi-server architecture where a server holds the
process data or OPC items in the so-called address space and
a client may read, write or subscribe to them using different
data access mechanisms (synchronous, asynchronous, refresh,
or subscribe). An OPC server may organise the items in
groups on behalf of the client assigning some common
properties (update rate, active, call-back, dead-band, etc.).
Another important aspect of OPC is that it transmits data only
on change, which results in a substantial reduction of the data
traffic.

Several firms offer CANopen OPC servers, but those
investigated are based on their own special hardware interface
and they support only limited subsets of the CANopen
protocol. Although these subsets fulfil most of the industrial
requirements, they do not provide all functionality required in
high energy physics. Therefore we have developed a
CANopen OPC Server supporting the CANopen device
profiles required. This package is organised in a part which
acts like a driver for CANopen and is specific to the PCI-
CAN interface card chosen, and a hardware-independent part
which implements all OPC interfaces and main loops
handling communication with external applications. This

CANopen-OPC server imports from a configuration file all
information needed to define its address space, the bus
topology and the communication parameters.

III. IMPLEMENTATION OF VERTICAL SLICE

A full “vertical slice” of the ATLAS DCS has been
implemented, which ranges from the I/O point (sensor or
actuator) up to the operator interface comprising all elements
described above, like ELMB, CAN, OPC Server and PVSS-II.
The software architecture of the vertical slice is shown in
figure 2.

Figure 2: Software Architecture

The system topology in terms of CANbus, ELMBs and
sensors is modelled in the PVSS-II database using data-points.
These data-points are connected to the items in the CANopen-
OPC server address space. Setting a data-point in PVSS-II
will trigger the OPC server to send the appropriate CANopen
message to the bus. In turn, when an ELMB sends a
CANopen message to the bus, the OPC server will decode it,
set the respective item in its address space and hence transmit
the information to a data-point in PVSS-II. The SCADA
application carries out the predefined calculations to convert
the raw data to physical units, possibly trigger control
procedures, and trend and archive the data. The vertical slice
also comprises PVSS-II panels to manage the configuration,
settings and status of the bus.

This vertical slice has been the basis for several control
applications of ATLAS subdetectors like the alignment
systems of the Muon Spectrometer, the cooling system of the
Pixel subdetector, the temperature monitoring system of the
Liquid Argon subdetector and the calibration of the Tile
Calorimeter at a test beam. As an example the latter will be
discussed in the next paragraph.

A subset of the Tile Calorimeter modules needs to be
calibrated with particles in a test beam. The task of DCS is to
monitor and control the three different subsystems, the high
voltage, the low voltage and the cooling system. A total of
seven ELMBs were connected to the CAN bus. For the low
voltage system, the standard functionality of the vertical slice

was easily extended in order to drive analogue output
channels by means of off-board DAC chips. This application
also interfaced to the CERN SPS accelerator in order to
retrieve the beam information for the H8 beam line. Data
coming from all subsystems were archived in the PVSS-II
historical database and then passed to the Data Acquisition
system for event data by means of the DCS-DAQ
Communication software (DDC) [7].

Figure 3 shows the PVSS graphical user interface of this
application. The states of the devices integrating the DCS are
colour-coded and the current readings of the operational
parameters are also shown in the panel. Dedicated panels for
each subsystem and graphical interfaces to the historical
database and for alert handling are also provided. The system
has proven to work very reliably.

Figure 3: Control Panel for Tile Calorimeter Calibration

IV. CAN BRANCH TEST

Several thousand ELMB nodes will be used in ATLAS,
the largest sub-detector comprising alone 1200 nodes. When
organising them in CANbuses, conflicting requirements like
performance, cost, and operational aspects have to be taken
into account. For example, a higher number of ELMBs per
branch – the maximum number possible is 127 – reduces the
cost, but also reduces performance and increases the
operational risk, i.e. in case of failure a bigger fraction of the
detector may become in-operational. Additionally, several
CAN messages having different priorities may be transferred
at the same time. This calls for an efficient design of the bus
to minimise the collisions of the frames. The priority is
defined by the so-called Communication Object Identifier
(COB-ID) in CANopen, which is built from the node
identifier and the type of message.

A 200m long CAN branch with 16 ELMBs has been set up in
order to measure its performance in terms of data volume and
readout speed, and to identify possible limiting elements in
the readout chain. The set-up used is shown in figure 4. The
ELMBs were powered via the bus using a 9 V power supply.
The total current consumption was about 0.4 A.. The total

number of channels and their transmission types are given in
table 1.

Figure 4: Set-up of CAN branch test

COB-ID Type Channels Mode
0x180 + NodeId Analogue Input 1024 Sync
0x200 + NodeId Digital Input 128 Async + Sync
0x280 + NodeId Digital Output 256 Asyn

Table 1: I/O points of the CAN branch test

Due to the large number of channels, the analogue inputs of
the ELMBs were not connected to the sensors. A special
version of the ELMB software was used to generate random
ADC data ensuring new values at each reading and therefore
maximising the traffic through the OPC server. The digital
output and input ports were interconnected to check the
transmission of CAN messages with different priorities on the
bus, i.e. output lines can be set while inputs are being read.
Figure 5 shows the bus activity after a CANopen SYNC
command is sent to the bus. All ELMBs try to reply to this
message at the same time causing collisions of the frames on
the bus. The CAN collision arbitration mechanism handles
them according to the priority of the messages. In this figure,
the Bus Period is defined as the time taken for all synchronous
messages to be received from all nodes after the SYNC
command has been sent to the bus. δ defines the time between
consecutive CAN frames on the bus and is a function of the
bus speed, which is limited by the CANbus length (typically
0.7ms at 125kbaud). The time between successive analogue
channels from a single ELMB, which is dependent upon the
ADC conversion rate, is given by ∆. The OPC Server
generates the SYNC command at predefined time intervals
and this defines the readout rate.

The SCADA application was distributed over two PCs
running WinNT (128 MB of RAM and 800 MHz clock
frequency). The hardware was connected to a PC acting as
Local Control Station (LCS), where the OPC server and
control procedures where running. All values were archived to
the PVSS-II historical database. The second PC, acting as
operator station, was used to access the database of the LCS

Figure 5: Bus activity after a SYNC

and to perform data analysis and visualisation. The
communication between the two systems was internally
handled by PVSS-II. A third PC, running as a CAN analyser,
was used to log all CAN frames on the bus to a file for later
comparison with the values stored in the SCADA database.
This CAN analyser is a powerful diagnostic tool. It allows for
debugging of the bus enabling visualisation of the traffic and
sending of messages directly to the nodes.

The test was performed for different settings of the ADC
conversion rate and of the update rate of the OPC server. This
parameter defines the polling rate of the internal cache of the
OPC server for new data to be transferred to the OPC client.
The readout rate was also varied from values much greater
than the bus period down to a value close to it. The CPU
behaviour was monitored under these sets of conditions.

We have observed excellent performance of the ATLAS DCS
vertical slice at low conversion rates (1.88 and 3.71 Hz). All
messages transmitted to the bus have been logged in the
PVSS historical database. This result is independent of the
SYNC interval as long as this parameter is kept above the bus
period. However, some ATLAS applications call for a faster
readout. Results at 15.1 and 32.5 Hz show a good behaviour
when the SYNC interval is higher than the bus period.
Performance deteriorates when the SYNC interval tends to the
bus period. Crosscheck with the CAN analyser files showed
that many messages were not in the PVSS-II database. Two
major problems were identified: overflows in the read buffer
of the NI-CAN interface card, and the PVSS-II archiving
taking close to 100% of the CPU time while the avalanche of
analogue channels is on the bus. It was also found that these
results are very sensitive to the OPC update rate. The faster
the update takes place, the more CPU time is required limiting
its availability for other processes like the PVSS archiving.
This suggests to split the PVSS application in such a manner
that only the OPC interface runs on the LCS while all
archiving is handled higher up in the hierarchy shown in
figure 4. However, further tests must be performed to
address the limitation of each of the individual elements
quantitatively.

V. CONCLUSIONS AND OUTLOOK

PVSS-II has been found to be a good solution to implement
the BE system of the ATLAS DCS. It is device oriented and
allows for system distribution to aid the direct mapping of the
DCS hierarchy. The ELMB I/O module has been shown to
fulfil the requirements of the majority of the sub-detectors.
Both PVSS-II and the ELMB are well accepted by the
ATLAS sub-detector groups. The vertical slice comprises of
these two components interconnected via the CANopen OPC
Server. Many applications have been developed using this
vertical slice and they have shown that it offers high
flexibility, good balance of the tasks, reliability and
robustness. A full branch test has been performed with the
aim of estimating its performance. Good results were obtained
for low ADC conversion rates. Tests at higher ADC
conversion rates allowed the identification of several
problems, such as the read buffer size of the PCI-CAN card
causing overflows of CAN messages. For this and other
reasons, such as cost and architecture, this interface card will
be replaced. CPU usage increases to unacceptable levels with
high data flow when the OPC Server and archiving are both
run on a single processor. The vertical slice tests have helped
to better define the load distribution amongst different PVSS-
II systems.

Further tests are required to define the CAN topology to be
used in ATLAS. The main issues to be addressed are; the
system granularity in terms of number of buses per PC, the
number of ELMBs per bus (between 16 and 32 seems to fulfil
most requirements) and powering. In addition, bus behaviour
needs to be investigated further, e.g. the ELMB may only
send data on change. In response to a sync, a status message
would be sent giving a bit flag for each channel of the ELMB
indicating whether an error had occurred. If values exceed
pre-defined acceptable limits, then this could also be signaled
by the ELMB. Bus supervision and automatic recovery must
also be investigated. It must be possible to reset individual
nodes, reset the bus or perform power cycling, depending
upon the severity of any error encountered.

VI. REFERENCES

[1] H.J. Burckhart, “Detector Control System”, Fourth
Workshop on Electronics for LHC Experiments, Rome
(Italy), September 1998, p. 19-23.

[2] PVSS-II, http://www.pvss.com/
[3] JCOP, http://itcowww.cern.ch/jcop/
[4] B.Hallgren et al., “The Embedded Local Monitor Board

(ELMB) in the LHC Front-End I/O Control System”,
contribution to this conference.

[5] CAN in Automation (CiA), D-91058 Erlangen
(Germany). http://www.can-cia.de/

[6] OLE for Proccess Control, http://www.opcfoundation.org/
[7] H.J. Burckhart et al., “Communication between

Trigger/DAQ and DCS”, International Conference on
Computing in High Energy and Nuclear Physics, Beijing
(China) September 2001, p. 109-112.

